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9 Abstract Cyclin-dependent kinases CDK4 and CDK6 are

10 essential for the control of the cell cycle through the G1

11 phase. Aberrant expression of CDK4 and CDK6 is a hall-

12 mark of cancer, which would suggest that CDK4 and CDK6

13 are attractive targets for cancer therapy. Herein, we report

14 that calcein AM is a potent specific inhibitor of CDK4 and

15 CDK6 in HCT116 human colon adenocarcinoma cells,

16 inhibiting retinoblastoma protein (pRb) phosphorylation and

17 inducing cell cycle arrest in the G1 phase. The metabolic

18 effects of calcein AM (the calcein acetoxymethyl-ester) on

19HCT116 cells were also evaluated and the flux between the

20oxidative and non-oxidative branches of the pentose phos-

21phate pathway was significantly altered. To elucidate whe-

22ther these metabolic changes were due to the inhibition of

23CDK4 and CDK6, we also characterized the metabolic

24profile of a CDK4, CDK6 and CDK2 triple knockout of

25mouse embryonic fibroblasts. The results show that the

26metabolic profile associated with the depletion of CDK4,

27CDK6 and CDK2 coincides with the metabolic changes

28induced by calcein AM on HCT116 cells, thus confirming

29that the inhibition of CDK4 and CDK6 disrupts the balance

30between the oxidative and non-oxidative branches of the

31pentose phosphate pathway. Taken together, these results

32indicate that low doses of calcein can halt cell division and

33kill tumor cells. Thus, selective inhibition of CDK4 and

34CDK6 may be of greater pharmacological interest, since
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35 inhibitors of these kinases affect both cell cycle progression

36 and the robust metabolic profile of tumors.

37

38 Keywords Cyclin dependent kinases � CDK-inhibitor �

39 Tracer-based metabolomics � Pentose phosphate pathway �

40 Phase plane analysis

41 Abbreviations

42 Calcein AM Calcein acetoxymethyl-ester

43 CDK Cyclin dependent kinase

44 DMEM Dulbecco’s modified eagle medium

45 FCS Fetal calf serum

46 Ct MEF Mouse embryonic fibroblast

47 PBS Phosphate buffer saline

48 PPP Pentose phosphate pathway

49 pRb Retinoblastoma protein

50 TKO MEF Mouse embryonic fibroblast knockout

for CDK4, CDK6 and CDK2

51
52

53 1 Introduction

54 Typical proliferation of eukaryotic cells involves an orderly

55 progression through four distinct phases of the cell cycle: G1,

56 S, G2, and M (Malumbres and Barbacid 2001; Sherr 1996).

57 The first step of the G1/S transition of the cell cycle is reg-

58 ulated by cyclin-dependent kinases (CDKs: EC 2.7.11.22),

59 CDK4 and CDK6 and their inhibitors, p16INK4a and

60 p15INK4b. According to the long-prevailing model of cell

61 cycle control in mammalian cells, cyclin D-CDK4, cyclin

62 D-CDK6 and cyclin E-CDK2 complexes are sequentially

63 required to promote cell cycle entrance from quiescence,

64 progression through the G1 phase and transition from the G1

65 to the S-phase in response to mitogenic stimulation. Cell

66 culture and biochemical studies have indicated that cyclin

67 D-CDK4, cyclin D-CDK6 and cyclin E-CDK2 complexes

68 are essential and rate-limiting for the phosphorylation and

69 inactivation of the tumor suppressor retinoblastoma protein

70 (pRb) and the subsequent induction of the E2F-dependent

71 transcriptional program required to enter the S-phase

72 (Lundberg andWeinberg 1998;Malumbres et al. 2004; Sherr

73 and Roberts 2004). This step of the cell cycle is critical. If the

74 cell passes through the restriction point (R), it becomes

75 insensitive to extracellular stimuli and is committed to

76 entering the S-phase. Since almost all the regulators of this

77 cell cycle phase are mutated in cancer (Graf et al. 2009), this

78 phase has been considered as a valid therapeutic target. Since

79 most mutations in human cancers affect CDK4 and CDK6 or

80 their regulators (Hall and Peters 1996), and preclinical data

81 indicate that the inhibition of cyclin D-dependent kinase

82 activity may have therapeutic benefits (Graf et al. 2009;

83Malumbres and Barbacid 2006; Shapiro 2006; Yu et al.

842006), interest in CDK4 and CDK6 as promising targets for

85inhibiting cell cycle progression has been generated.

86Another important and critical feature of tumor cells is

87their metabolic adaptation, which provides them with

88metabolites and energy to progress through the cell cycle.

89This adaptation includes the phenomenon known as the

90‘‘Warburg effect’’ (high glycolysis in the presence of oxy-

91gen) (Warburg 1956), a high glutamine uptake, the activation

92of biosynthetic pathways and the over-expression of some

93glycolytic isoenzymes (Vizán et al. 2008). In recent years, it

94has become accepted that the metabolic adaptation of tumor

95cells also involves an enhancement of pentose phosphate

96pathway (PPP) fluxes and a specific imbalance between its

97two branches in favor of the oxidative branch versus the non-

98oxidative branch to maintain the high proliferative rates

99(Kuo et al. 2000; Poulsen and Frederiksen 1981; Ramos-

100Montoya et al. 2006). In previous studies, we have demon-

101strated that this balance between the oxidative and non-

102oxidative branches of the PPP is necessary to maintain the

103metabolic efficiency of the cancer cell for growth and pro-

104liferation, and that it can be a weakness in the robust tumor

105metabolic adaptation (Ramos-Montoya et al. 2006). PPP is

106also specifically regulated during cell cycle progression in

107tumor cells (Vizan et al. 2009).

108In the present study, we identified calcein (4050-bis(N,N-

109bis(carboxymethyl) aminomethyl) fluorescein) as a putative

110inhibitor of CDK4 and CDK6 that mimics the natural

111inhibitor p16INK4a in HCT116 cells, through the use of new

112bioinformatic tools (Villacanas et al. 2002; Villacanas and

113Rubio-Martinez 2006), docking procedures (Rubio-Marti-

114nez et al. 2005) and molecular assays. Moreover, we provide

115experimental evidence that this CDK4 and CDK6 inhibitor

116counteracts metabolic adaptations which are characteristic

117of tumor cells, and that this metabolic fingerprint coincides

118with that obtained from a mouse embryonic fibroblast

119knockout for CDK4, CDK6 and CDK2 cell line. We dem-

120onstrate not only that calcein is a promising agent that could

121be a key factor in the development of a new family of

122selective cyclin D-dependent kinase inhibitors, but also that

123inhibition of CDK4 and CDK6 impairs metabolic adapta-

124tions that support tumor cell cycle progression.

1252 Materials and methods

1262.1 Materials

127Dulbecco’s modified Eagle Medium (DMEM), F-12 HAM

128Nutrient mixture with L-glutamine, MEM-EAGLE non-

129essential aminoacid solution 9100, antibiotic (100 U/ml

130penicillin, 100 mg/ml streptomycin), Dulbecco’s Phosphate

131buffer saline (PBS), Trypsin EDTA solution C (0.05%
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132 trypsin–0.02% EDTA), L-glutamine solution 200 mM and

133 sodium pyruvate solution 100 mM were obtained from

134 Biological Industries; Fetal calf serum (FCS) and Trizol

135 were from Invitrogen; SDSwas from Fluka; Coomassie blue

136 was from Biorad; HEPES andMgCl2were fromApplichem;

137 A-Sepharose was from Pierce; the [c-32P]ATP, 3000

138 Ci/mmol, 10 mCi/ml and ECL were from Amersham; his-

139 tone H1 was from Boehringer Mannheim; Bradford reagent

140 (500-0006), Acrylamide (161-0158) and peroxidase-cou-

141 pled secondary antibody were from Bio-Rad Laboratories;

142 anti-CDK6 (sc-177), anti-CDK4 (sc-260-R), anti-cyclin

143 D3 (sc-182) and anti-p16INK4a (sc-468) were from Santa

144 Cruz Biotechnology; anti-cyclin D1 (06-137), anti-CDK2

145 (06-505) and anti-cyclin B1 (05-158) were from Upstate

146 Biotechnology; anti-actin (691001) was from MP Biomed-

147 icals; anti-phospho-Rb (Ser780) was from Cell Signaling

148 Technology; pGST-Rb (379-928) (gift of Dr Wang, San

149 Diego, CA, USA) fusion protein was expressed and purified

150 following Smith and Johnson (1988) and Frangioni and Neel

151 (1993). All other reagents were from Sigma Chemical CO.

152 2.2 Molecular modeling

153 Construction and molecular dynamics simulations of the

154 CDK6-p16INK4a complex and the determination of their

155 interactions were carried out as described Villacañas et al.

156 2002. All hot spots of the CDK6-p16INK4a interaction

157 surface were monitored throughout the production time to

158 obtain its pharmacophores. Catalyst (Accelrys, Inc., San

159 Diego, CA, USA) software was then used to obtain com-

160 pounds that matched the different interaction pharmaco-

161 phores. Selected compounds were docked into CDK6 with

162 an in-house program (Rubio-Martinez 2005) and, finally, a

163 visual structure analysis was carried out to reduce the

164 number of final modeled complexes. More details can be

165 found in supplementary material.

166 2.3 Cell culture

167 Human colon carcinoma HCT116 cells (donated by Dr.

168 Capellà, the Institut Català d’Oncologia, Barcelona, Spain)

169 were grown in DMEM:HAM’s F12 (1:1), supplemented

170 with 10% heat-inactivated FCS, 2 mM glutamine, 1 mM

171 sodium pyruvate, 1% non-essential amino acids, 50 mU/ml

172 penicillin and 50 lg/ml streptomycin. All cell cultures

173 were carried out at 37�C in a humidified atmosphere with

174 5% CO2.

175 Mouse embryonic fibroblast (Ct MEF) and mouse

176 embryonic fibroblast knockout for CDK4, CDK6 and

177 CDK2 (TKO MEF) cell lines, obtained from Dr. Barbacid

178 (Centro Nacional de Investigaciones Oncológicas, Madrid,

179 Spain) (Santamaria and Ortega 2006), were grown as a

180 monolayer culture in minimum essential medium (DMEM

181with L-glutamine, without glucose or sodium pyruvate) in

182the presence of 10% heat-inactivated FCS, 10 mM D-glu-

183cose and 0.1% streptomycin/penicillin in standard culture

184conditions. They were incubated at 37�C, 80% humidity,

1855% CO2, and 3% O2. Two different clones of each were

186used in order to discard the effect of immortalization: Ct

187MEF: LD179.10.1 and LD207.3.1 and TKO MEF:

188LD1043.7.1 and LD1043.6.1.

1892.4 Immunoprecipitation and kinase assays

190For the kinase assays, immunoprecipitationswere performed

191as described by Harlow and Lane (Harlow and Lane 1988).

192HCT116 cells were lysed for 30 min at 4�C in IP buffer

193(50 mM HEPES pH 7.5, 150 mM NaCl, 2.5 mM EGTA,

1941 mM EDTA, 0.1% Tween 20, 10% glycerol, 1 mM DTT,

1951 mM phenyl methyl sulfonyl fluoride, 1 lg/ml aprotinin,

19610 lg/ml leupeptin, 10 mM ß-glycerophosphate, 0.1 mM

197Na3VO4 and 1 mM NaF). Lysates were sonicated twice for

19810 s at 4�C and clarified by centrifugation at 10,0009g for

19910 min. The supernatant fraction protein content was mea-

200sured using the Bradford method (Bradford 1976), and

201400 lg of protein from the lysates were incubated with 4 lg

202of antibody (CDK6, CDK4, cyclin-D1, cyclin-D3, cyclin-B1

203or CDK2) or with 1 ll of normal rabbit serum or normal

204mouse serum (controls) O/N shaking at 4�C. Protein

205immunocomplexes were then incubated with 20 ll protein

206A-Sepharose for 1 h at 4�C, collected by centrifugation and

207washed four times in IP buffer and twice in kinase buffer

208(50 mM HEPES pH 7.4, 10 mM MgCl2, 2.5 mM EGTA,

2090.1 mM Na3VO4, 10 mM ß-glycerophosphate and 1 mM

210DTT). They were then incubated in kinase buffer containing

2112 Ci [c-32P]ATP and 1 lg pGST-Rb (379-928) fusion pro-

212tein for CDK6 and CDK4 kinase assays, or 3 lg histone H1

213for CDK1 and CDK2 kinase assays, for 30 min. at 30�C in a

214final volume of 30 ll. The samples were pooled and redis-

215tributed to assure equal amounts of all the reagents and

216immunoprecipitated CDK. Finally, the samples were boiled

217for 5 min and electrophoresed on SDS-polyacrylamide gels,

218essentially as described by Laemmli (1970), and the gels

219were stained with coomassie brilliant blue, dried, and

220exposed to X-ray films at -80�C. The intensity of radioac-

221tivity was measured with Typhoon Trio and Trio 9200 (GE

222Healthcare). p21Kip/Cip and purified p16INK4a were used as a

223positive control of inhibition.

2242.5 Gel electrophoresis and immunoblotting

225Cells were lysed in a buffer containing 2% SDS, 67 mM

226Tris–HCl pH 6.8 and 10 mM EDTA and sonicated twice

227for 10 s (4�C). Protein content was measured according to

228the Lowry procedure, using bovine serum albumin (BSA)

229as standard. The extracts were electrophoresed in SDS-
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230 polyacrylamide gels, essentially as described by Comin-

231 Anduix et al. 2002 and Laemmli 1970. After electropho-

232 resis, the proteins were transferred to Immobilon-P strips

233 for 1.5 h at 70 V. The sheets were preincubated in TBS

234 (20 mM Tris–HCl pH 7.5, 150 mM NaCl), 0.05% Tween

235 20 and 3% BSA for 1 h at room temperature and then

236 incubated for 1 h at room temperature in TBS, 0.05%

237 Tween 20, 3% BSA containing anti-phospho-Rb (Ser780),

238 anti-CDK4 (sc-260), anti-CDK2 (06-505) or anti-actin

239 (60100) antibodies. After washing in TBS, 0.05% Tween

240 20 (three times, 10 min each), the sheets were incubated

241 with a peroxidase-coupled secondary antibody (1:3000

242 dilution) for 1 h at room temperature. After incubation, the

243 sheets were washed twice in TBS, 0.05% Tween 20 and

244 once in TBS. The reaction was visualized using ECL. The

245 Image LAS-3000 Photo Version 2.0 (Fujifilm) was used to

246 analyze the chemiluminescence.

247 2.6 Viability assay

248 The assay was performed using a variation of the method

249 described by Mosmann (Matito et al. 2003; Mosmann

250 1983; Ramos-Montoya et al. 2006). Growing concentra-

251 tions of the product were plated in 96-well flat-bottomed

252 microtiter plates to a final volume of 200 ll where

253 1700 cells/well had been seeded 24 h before. After incu-

254 bation for 72 h, MTT at a final concentration of 0.5 mg/ml

255 was added. After 1 h of incubation, the generated formazan

256 was dissolved with 100 ll of DMSO per well. The absor-

257 bance was measured on an ELISA plate reader (Merck

258 ELISA System MIOS version 3.2., Tecan Sunrise, Tecan

259 Group Ltd.) at 550 nm. The concentrations that caused

260 50% inhibition of cell viability (IC50) were calculated.

261 2.7 Cell culture synchronization and cell cycle analysis

262 HCT116 cells were brought to 95% cell confluence and

263 kept confluent for 24 h with medium containing 0.5% FCS.

264 Cells were then seeded to 50–60% cell confluence in a

265 medium with 10% heat-inactivated FCS. Calcein AM

266 2 lM was added.

267 In order to determine the proportion of cells in each cell

268 cycle phase (G1, S or G2), cell cycle analysis was assessed

269 with flow cytometry using a fluorescence-activated cell

270 sorter (FACS). Approximately 500,000 cells were resus-

271 pended in 0.5 ml PBS followed by the addition of 4.5 ml

272 70% (v/v) ethanol (Matito et al. 2003). Cells were briefly

273 stained in PBS containing 50 lg/ml propidium iodide,

274 10 lg/ml DNAse free RNAse and 0.1% Triton� X-100.

275 FACS analysis was carried out at 488 nm in an Epics XL

276 flow cytometer (Beckman Coulter). Data from 12,000 cells

277 were collected and analyzed using the MultiCycle program

278 (Phoenix Flow Systems).

2792.8 Isotopologue distribution analysis

280Tracer studies were carried out by incubating the cells in the

281presence of the corresponding incubation medium con-

282taining 10 mM glucose enriched by 50% in the tracer

283[1,2-13C2]-D-glucose. After incubation for 72 h, the cell

284medium was removed, thereby separating the incubation

285medium from the cells adhered to the dishes, and all frac-

286tions were frozen in liquid nitrogen and stored at -80�C

287until processing.

288Mass spectral data were obtained on an HP5973 mass

289selective detector connected to an HP6890 gas chromato-

290graph (HCT116 with calcein AM assays) and on a GCMS-

291QP2010 selective detector connected to a GC-2010 gas

292chromatograph from Shimadzu (Ct MEF and TKO MEF

293assays). The settingswere as follows:GC inlet 230�C (200�C

294for lactate measurement), transfer line 280�C, MS source

295230�CandMSQuad 150�C.AnHP-5 or aDB-5MS capillary

296column (both: length (m), 30; internal diameter (lm), 250;

297film thickness (lm), 0.25) was used. Spectral data were

298corrected using regression analysis to extract natural 13C

299enrichment from results (Lee et al. 1991). Measurement of

300
13C label distribution determined the different relative dis-

301tribution percentages of the isotopologues, m0 (without any

302
13C labels),m1 (with one 13C),m2 (with two 13C), etc.,which

303were reported as molar fractions.
P

m is the sum of the

304labeled species (
P

m = m1 ? m2 ? m3…) and is repre-

305sentative of the synthesized molecules of each metabolite.

306The total label enrichment
P

mn is the weighted sum of the

307labeled species (
P

mn = m1 9 1?m2 9 2?m3 9 3…)

308and is representative of the contribution of the tracer used in

309the synthesis of each metabolite.

310Lactate from the cell culture medium was extracted with

311ethyl acetate after acidification with HCl. Lactate was

312transformed to its propylamide-heptafluorobutyric form

313and the ion cluster around m/z 328 (carbons 1–3 of lactate,

314chemical ionization) was monitored for the detection of m1

315(recycled lactate through the pentose cycle) and m2 (lactate

316produced by glycolysis). The relative amount of glucose

317that is converted indirectly to lactate through the pentose

318cycle, known here as pentose cycle activity, is calculated

319by the (m1/m2)/(3 ? (m1/m2)) ratio using lactate isoto-

320pologues (Lee et al. 1998).

321RNA ribose was isolated by acid hydrolysis of cellular

322RNA after Trizol-purification of cell extracts. Ribose iso-

323lated from RNA was transformed to its aldonitrile-acetate

324form using hydroxylamine in pyridine and acetic anhy-

325dride. We monitored the ion cluster around the m/z 256

326(carbons 1–5 of ribose, chemical ionization) to find the

327molar enrichment and positional distribution of 13C labels

328in ribose (Boros et al. 1997; Lee et al. 1998). The m2 ribose

329originated from [1,2-13C2]-glucose that is converted to

330ribose through transketolase enzyme reactions, whereas m1

M. Zanuy et al.
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331 ribose originated from glucose metabolized by direct oxi-

332 dation via the oxidative steps of the PPP. The isotopo-

333 logues m3 and m4 come from the recycling of the

334 previously labeled riboses. The oxidative versus non-oxi-

335 dative ratio was measured as ox/non-ox = (m1 ? m3)/

336 (m2 ? m3 ? 29m4).

337 2.9 Sugars-phosphate determination

338 Hexose, triose, pentose and fructose-1,6-bis-phosphates were

339 determined in cell monolayers frozen in liquid nitrogen as

340 described (Vizan et al. 2007). Frozen cells were briefly

341 scraped off the plates and 100 mM acetic acid solution at 4�C

342 was added. The obtained homogenates were centrifuged at

343 0.49g for 10 min at 4�C, and the supernatants containing

344 sugar phosphate molecules were separated and kept frozen at

345 -80�C for the following liquid chromatography/mass spec-

346 trometry (LC–MS) analysis. Chromatographywas performed

347 using an Agilent 1100 Quaternary Pump (Agilent Technolo-

348 gies) equipped with a refrigerated autosampler. A Nucleodex

349 b-OH high-performance liquid chromatography (HPLC)

350 column, 200 9 4 mm i.d. (Panreac Quı́mica S.A.U.) with a

351 binary gradient at a flow-rate of 0.75 ml/min was used. Sol-

352 vent A consisted of 10 mM ammonium acetate pH 4.0. Sol-

353 vent B consisted of acetonitrile. Before reaching the mass

354 spectrometer, the flow-rate was split (1:3). To reduce the

355 residualmatrix effect reaching themass spectrometer, a divert

356 valve (VICI Valco Instruments) drained off the LC eluent

357 during the time in which interference was detected in order to

358 avoid contamination of the mass spectrometer. Identification

359 of sugar phosphates was carried out in an API-3000 tandem

360 mass spectrometer (Applied Biosystems). The multiple reac-

361 tion monitoring (MRM) transitions were 259/97 for glucose-

362 6-phosphate and fructose-6-phosphate (hexose phosphates),

363 199/97 for glyceraldehyde-3-phosphate and dihydroxyace-

364 tone phosphate (triose phosphates), 339/97 for fructose-1,6-

365 bisphosphate and229/97 for ribose-5-phosphate andxylulose-

366 5-phosphate (pentose phosphates).

367 2.10 Data analysis and statistical methods

368 In vitro experiments were carried out using three cultures

369 each time for each treatment regimen and then repeated

370 twice. Mass spectral analyses were carried out by three

371 independent automatic injections of 1 ll of each sample by

372 means of the automatic sampler and accepted only if the

373 sample standard deviation was less than 1% of the nor-

374 malized peak intensity. Statistical analyses were performed

375 using the parametric unpaired, two-tailed independent

376 sample t test with 95, 99, and 99.9% confidence intervals,

377 and P\ 0.05, P\ 0.01, and P\ 0.001 were considered,

378 respectively, to indicate significant differences in glucose

379 carbon metabolism.

3803 Results

3813.1 Selection of a better CDK4 and CDK6 inhibitor

382Results from CDK6-p16INK4a complex dynamics were used

383to model the interaction pattern of the putative inhibitors.

384The ACD 3D database (available chemical database 3D)

385was screened for commercial compounds that matched our

386query. After docking procedures, eight compounds were

387selected for further experimental kinase assays, with cal-

388cein being the most active (Figure SM1, Supplementary

389Material).

3903.2 Calcein selectively inhibits CDK4 and CDK6

391activities, disrupting cell growth, pRb and cell

392cycle

393To investigate whether calcein selectively inhibits CDK4

394and CDK6 activities, immunoprecipitations were per-

395formed, followed by kinase assays in the presence or absence

396of calcein. A dose–response curve with increasing doses of

397calcein from 10 lM to 500 lM was carried out with

398immunoprecipitatedCDK6 (Fig. 1a),with an IC50 of 75 lM.

399Calcein at this concentration produced similar effects when

400CDK4, cyclin D1 or cyclin D3 were immunoprecipitated

401(Fig. 1b), but did not inhibit CDK1 or CDK2 kinase activi-

402ties at any of the concentrations tested (Figure SM2.A sup-

403plementary material). As expected from in silico complex

404dynamics, the interaction of calceinwithCDK6 seemed to be

405through the p16INK4a binding site, as calcein was able to

406displace p16INK4a from the immunoprecipitated enzyme

407(Figure SM2.B, supplementary material). These results

408demonstrate that calcein interacts selectively with CDK4

409and CDK6 at the p16INK4a binding site, inhibiting their

410kinase activitywithout affectingCDK2andCDK1 activities.

411To examine whether calcein penetrates the cell mem-

412brane and inhibits intracellular CDK4 and CDK6 activities,

413we used human colon adenocarcinoma HCT116 cells, as

414they have a silenced wild-type p16INK4A gene and only

415express a mutant allele (Myohanen et al. 1998). Increasing

416doses of calcein in the media induced a progressive inhi-

417bition of HCT116 cell viability, presenting a rather high

418IC50 of 400 lM after 72 h of treatment. The calcein acet-

419oxymethyl-ester (calcein AM) and tert-butoxy methyl ester

420(calcein tBM), which are more lipophilic and diffusible

421through the cytoplasmic membrane than the non-esterified

422calcein, induced a stronger inhibition of HCT116 cell

423viability, with IC50 values of 0.6 and 80 lM, respectively.

424Treatment of HCT116 cells with the non-esterified calcein

425or with calcein AM decreased the phosphorylation of the

426serine 780 of pRb, which is a specific target for CDK4 and

427CDK6 (Fig. 2a). In addition, calcein AM arrested the cell

428cycle in G1 of synchronous HCT116 cells (Fig. 2b).
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429 All these data suggest a molecular mechanism of action

430 of calcein and its esters through the inhibition of CDK4 and

431 CDK6, which in turn affects cell cycle regulation.

432 3.3 Metabolic effects caused by the inhibition

433 of the CDKs responsible for G1/S transition

434 HCT116 human colon adenocarcinoma cells exposed to

435 increasing concentrations of calcein AM were incubated

436 for 72 h with 10 mM glucose 50% enriched in [1,2-13C2]-

437 D-glucose. The calcein AM concentrations were the IC25

438 (0.36 lM), IC50 (0.61 lM) and IC75 (1.0 lM) after 72 h of

439 treatment. In parallel, we also performed incubations with

440 immortalized mouse embryonic fibroblasts (Ct MEF)

441 control and knockout for CDK4, CDK6 and CDK2 (TKO

442 MEF) in the presence of the same tracer, to check whether

443 the metabolic changes induced by calcein AM on HCT116

444 cells were characteristic of the inhibition of the CDKs

445 responsible for the G1/S transition. These MEF cell lines

446 (Ct and TKO) constitute an additional new tool that could

447elucidate the effects of the permanent absence of these

448CDKs in vivo and their contributions to cell cycle pro-

449gression and the robust tumor metabolic adaptation.

450Lactate and ribose from RNA synthesized from the

451tracer [1,2-13C2]-D-glucose were measured using gas

452chromatography coupled to mass spectrometry (GC–MS).

453Table 1 shows the pondered values of the 13C-enriched

454isotopologues, m1/Rm and m2/Rm, of lactate and ribose

455from RNA. The molar enrichment Rmn of ribose from

456RNA is also shown.

457Lactate m2 isotopologues (lactate molecules that con-

458tain two 13C atoms) originated from [1,2-13C2]-D-glucose

459converted to lactate through glycolysis, whereas lactate m1

460isotopologues originated from the metabolization of the

461tracer through the oxidative step of the PPP and then

462recycled to glycolysis via the non-oxidative PPP. Calcein

463AM induced a dose–response decrease of m1/Rm and an

464increase of m2/Rm in HCT116 cells. This drop of m1/Rm

465suggests that calcein AM reduces the contribution of the

466oxidative PPP flux in lactate synthesis. Similarly, when

Fig. 1 Effect of calcein on

kinase assays in

inmunoprecipitated CDK6,

CDK4, cyclin D1, and cyclin

D3. a Dose–effect curve of non-

esterified calcein on CDK6

activity (10–500 lM). b CDK4,

cyclin D1 and cyclin D3

immunoprecipitations and

kinase assays tested in the

presence of 75 lM of non-

esterified calcein and p16INK4a

(3 lM). pGST-Rb (379–928)

fusion protein was used as a

substrate. Mean ? SD; n = 3.

(*) indicates P\ 0.05 and (**)

indicates P\ 0.01 compared to

vehicle
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467 MEF cell lines were incubated with [1,2-13C2]-D-glucose,

468 the deletion of CDK4, CDK6 and CDK2 reduced m1/Rm

469 lactate, indicating that TKO MEF cells had a reduced

470 contribution of the oxidative pathway of PPP in lactate

471 synthesis. Moreover, the pentose cycle activity decreased

472 progressively in HCT116 cells treated with growing doses

473of calcein AM, and was 13.75% lower in the condition

474where the cells were treated with the calcein AM IC75

475concentration (0.026 ± 0.001 in Ct vs. 0.023 ± 0.001 in

476IC75). Similarly, pentose cycle activity in TKO MEF cells

477was 32.35% lower than in Ct MEF (0.040 ± 0.002 in Ct

478vs. 0.027 ± 0.008 in TKO). This decreased pentose cycle

Fig. 2 Phosphorylation of

serine780 of pRb and cell cycle

analysis. a HCT116 cells were

treated with 400 lM or with 0.6

and 2 lM of calcein AM for

24 h and the extracts were

blotted specifically against

phosphoserine 780 of pRb.

b Synchronous HCT116 cells in

the G1 phase at time 0 h (t0

synchronous control) and after

24 h with or without treatment

with calcein AM 2 lM. (*)

indicates P\ 0.05 and (**)

indicates P\ 0.01. Both

experiments were performed

three times (Mean ? SD;

n = 3). One representative

example is shown in each case

Table 1 Isotopologue distribution in lactate and ribose. M1/Rm and m2/Rm were determined in lactate isolated from incubation medium and

in ribose isolated from RNA. Rmn in ribose isolated from RNA was also measured

Isotopologue distribution analysis

HCT116 MEF

Lactate Ct IC25 IC50 IC75 Ct TKO

m1/
P

m 0.075 ± 0.003 0.075 ± 0.001 0.064 ± 0.003** 0.065 ± 0.002** 0.104 ± 0.000 0.070 ± 0.020*

m2/
P

m 0.919 ± 0.003 0.918 ± 0.002 0.928 ± 0.002** 0.926 ± 0.002* 0.835 ± 0.049 0.843 ± 0.043

Ribose Ct IC25 IC50 IC75 Ct TKO

m1/
P

m 0.544 ± 0.003 0.522 ± 0.002*** 0.496 ± 0.003*** 0.474 ± 0.003*** 0.450 ± 0.002 0.414 ± 0.002***

m2/
P

m 0.303 ± 0.000 0.324 ± 0.001*** 0.343 ± 0.004*** 0.364 ± 0.002*** 0.385 ± 0.002 0.420 ± 0.002***
P

mn 0.839 ± 0.016 0.858 ± 0.030 0.811 ± 0.098** 0.668 ± 0.055* 0.754 ± 0.008 0.718 ± 0.008**

* P\ 0.05; ** P\ 0.01; *** P\ 0.001. Experiments were performed twice. Results from one of them are shown (Mean ? SD; n = 3)
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479 activity reinforced the hypothesis of a diminution of the

480 oxidative PPP flux and a decrease in its contribution to

481 glucose metabolism when the G1/S-phase of the cell cycle

482 is perturbed.

483 Calcein AM treatment in HCT116 cells also resulted in

484 a slight decrease in the incorporation of 13C atoms from

485 glucose into nucleic acid ribose (Table 1). The average

486 number of 13C atoms per ribose molecule (Rmn) was

487 reduced by 20% at the dose of IC75 of calcein AM in

488 HCT116 cells. As suggested by the above-described

489 decrease in lactate m1/Rm data, the reduction of ribose

490 synthesis in HCT116 cells could be caused by reduced

491 substrate flux through the oxidative steps of the PPP.

492 Furthermore, calcein AM treatment in HCT116 cells

493 caused a dose-dependent m1/Rm decrease as well as a

494 linear increase of m2/Rm ribose (Table 1). This was in

495 accordance with the results obtained in lactate measure-

496 ments and denoted a clear attenuation of the flux through

497 the oxidative PPP.

498 Furthermore, TKO MEFs had a lower proliferation rate

499 than Ct MEFs (Ct MEF: 0.26 h-1 vs. TKO MEF:

500 0.12 h-1), the total label incorporation in ribose (Rmn)

501 being lower than that of Ct MEFs (Table 1). Moreover,

502 deletion of CDK4, CDK6 and CDK2 resulted in a decrease

503 in the percentage of ribose m1/Rm and an increase in

504 ribose m2/Rm, which suggests a decrease in the use of the

505 oxidative branch of the PPP. This was in accordance with

506 the results obtained in lactate measurements and denoted a

507 clear attenuation of the flux through the oxidative PPP.

508 Similarly, the oxidative/non-oxidative ratio of PPP was

509 14% lower for TKO MEFs than for Ct MEFs (0.78 ± 0.00

510 and 0.91 ± 0.01, respectively). Equally, all calcein AM

511 treatments showed a lower oxidative/non-oxidative ratio of

512 PPP compared to the control treatments (8.42, 18, and

513 31.90% lower for the IC25, IC50, and IC75 treated HCT116,

514 respectively, 1.27 ± 0.00 being for control HCT116 cells).

515 It has been reported that this ratio is higher in tumor cells

516 compared to normal cells (Ramos-Montoya et al. 2006).

517 To provide information on the relative importance of the

518 two pathways of pentose phosphate production for the

519 viability of the cell, we used phenotype phase-plane anal-

520 ysis. Phenotype phase-plane analysis is the analysis of

521 substrate production and utilization of cells and is an

522 important aspect of reaction network analysis (Edwards

523 et al. 2002; Lee 2006). Figure 3 contains the phase-plane

524 analysis of the normalized ribose isotopologues m1 and

525 m2, where values for oxidative ribose synthesis are plotted

526 against non-oxidative ribose synthesis. The line of opti-

527 mality is arbitrarily defined as the line drawn through the

528 point for the basal state (Ct Control treatment or Ct MEF)

529 corresponding to conditions satisfying the optimal condi-

530 tions for growth (objective function). The slope of the line

531 represents the optimal ratio of ribose formed through the

532oxidative pentose phosphate pathway to a given level of

533non-oxidative ribose synthesis for the tumor cells. When a

534line is drawn from a phenotype (a point on the phase-

535plane), parallel to the major axis, the intersection between

536the line of optimality and the parallel line indicates the

537degree of optimality relative to the basal state. Using

538metabolic phenotype phase-plane analysis, we saw that

539increasing doses of calcein AM or the deletion of the main

540CDKs of the G1/S-phase transition resulted in a more

541dramatic imbalance between oxidative/non-oxidative PPP.

542According to these data, the representation of m1/Rm vs

543m2/Rm in a phenotype phase-plane analysis confirmed the

544same tendency as in calcein AM-treated cells: the deletion

545of the CDKs, which phosphorylate pRb, caused an imbal-

546ance of the PPP towards the non-oxidative branch (Fig. 3).

5473.4 Sugar phosphate pool decreases when cell cycle

548does not progress

549Changes in the absolute concentrations of the intermediary

550sugar phosphates reflect variations in the metabolic flux

551profile distribution. Pentose phosphate, triose phosphate

552and hexose phosphate pools were quantified in HCT116

553cells treated with IC50 of calcein AM (0.6 lM) and control

Fig. 3 13C ribose label distribution. Phase-plane analysis of the

normalized ribose isotopologues m1 and m2. a HCT116 cells treated

without (Ct) or with IC25, IC50, and IC75 doses of calcein AM; and

b the control mouse embryonic fibroblasts (Ct MEF) and the MEF

knockout for CDK4, CDK6, and CDK2 (TKO MEF)
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554 and TKO MEFs (data not shown). Inhibition of CDK4 and

555 CDK6 function using a calcein AM inhibitor or the

556 knockout cell model resulted in decrease in the concen-

557 tration of fructose-1,6-bisphosphate, pentose and triose

558 phosphate intermediaries. Although, these changes were

559 not significant, they showed a tendency in which the arrest

560 in the G1 phase of the cell cycle alters the profile of sugar

561 phosphate concentrations.

562 4 Discussion

563 Evidence indicates that CDK4 and CDK6 are excellent

564 targets for the design of new anti-tumor drugs (Landis et al.

565 2006; Yu et al. 2006; Malumbres and Barbacid 2006;

566 Marzec et al. 2006). However, the design of good specific

567 inhibitors against the activity of these kinases has not been

568 successful until now. Different strategies have been

569 employed in the search for good inhibitors but almost none

570 of them have been successful due to their unspecificity and

571 the subsequent side effects (Fry et al. 2004; McInnes 2008;

572 Menu et al. 2008). Thus, there is emerging interest in

573 developing new strategies to search for selective inhibitors

574 of CDK4 and CDK6 for cancer chemotherapy (Mahale

575 et al. 2006). To this end, in this study we used a new set of

576 bioinformatic tools to design CDK4 and CDK6 inhibitors

577 that mimic their natural inhibitor p16INK4a. One of these

578 inhibitors was calcein.

579 Calcein AM is a fluorescent dye that localizes intracel-

580 lularly after esterase-dependent cellular trapping and has

581 shown cytotoxic activity against various established human

582 tumor cell lines at relatively low concentrations (Jonsson

583 et al. 1996; Liminga et al. 2000). Furthermore, Liminga

584 and collaborators found that calcein AM caused a strong

585 apoptotic response within hours of exposure and tested it

586 on a panel of ten different cell lines, but they failed to find

587 its precise mechanism of action to inhibit cell proliferation

588 (Liminga et al. 1999; Liminga et al. 2000; Liminga et al.

589 1995). According to our results, calcein carboxylic esters

590 easily penetrate HCT116 cells, inhibiting cell viability at

591 relatively low doses compared with the non-esterified cal-

592 cein. We have also shown that calcein (the active form

593 inside the cell of the calcein AM ester) specifically inhib-

594 ited CDK4 and CDK6 (cyclin D-related activities),

595 inducing inhibition of pRb phosphorylation, which is

596 required for entering the S-phase of the cell cycle (Lund-

597 berg and Weinberg 1998; Malumbres et al. 2004). The

598 potential of calcein to avoid the entrance of treated cells

599 into the S-phase was further validated here, as calcein AM

600 treatment on HCT116 cells provoked a strong G1-phase

601 cell cycle arrest.

602 Having elucidated the effects of calcein on the cell cycle,

603 we proceeded to characterize in depth the effects of

604inhibiting CDK4 and CDK6 activities on the metabolic

605profile of the HCT116 cells. We have previously demon-

606strated that the balance between oxidative and non-oxidative

607branches of the PPP is essential to maintain proliferation in

608cancer cells and is a vulnerable target within the cancer

609metabolic network for potential new therapies for over-

610coming drug resistance (Ramos-Montoya et al. 2006). Our

611results here show that increasingly high calcein AM con-

612centrations result in a stronger imbalance of PPP in favor of

613the non-oxidative branch (Fig. 4). Using metabolic pheno-

614type phase-plane analysis, we deduced that themost efficient

615doses of calcein AM in the inhibition of tumor cell growth

616result in a more dramatic imbalance between oxidative and

617non-oxidative branches of PPP. The perturbation of this

618imbalance results in a state of metabolic inefficiency and

619consequently could lead to a pause in cell proliferation or

620even cell apoptosis. To ensure that the metabolic alterations

621induced by calcein AM in HCT116 cells were due to the

622specific inhibition of CDK4 and CDK6 activities induced by

623this compound, we also characterized the metabolic profile

624of control (Ct) and triple knockout (TKO) MEFs. These

625results showed that the lack of functionality of CDK4, CDK6

626and CDK2 induced changes in the metabolic profile of

627fibroblasts that correlate with the alterations induced by

628calcein AM in the metabolic profile of HCT116 tumor cells.

629These results support our hypothesis that inhibition of CDK4

630and CDK6 was responsible for the oxidative/non-oxidative

631imbalance in PPP induced by calcein AM.

632We recently reported a specific increase in the activities of

633two key enzymes of PPP, glucose-6-phosphate dehydroge-

634nase for the oxidative branch and transketolase for the non-

635oxidative branch, during the S/G2 phases of the cell cycle, in

636particular during the S-phase, when the synthesis of nucle-

637otides is required. Such an increase in the PPP enzyme

Fig. 4 Metabolic changes associated to CDK4/6 inhibition. CDK4

and CDK6 inhibition leads to an imbalance between the oxidative and

non-oxidative branches of the pentose phosphate pathway towards the

non-oxidative branch. Thick lines indicate enhanced metabolic routes.

Dotted lines indicate less active metabolic routes and smaller font

sizes indicate lower intermediate concentrations
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638 activities correlates with a relative increase in the pentose

639 phosphate pool and a progressive increase in the balance

640 between oxidative and non-oxidative branches of PPP in the

641 S and G2 phases (Vizan et al. 2009). This means that the

642 contribution of the oxidative branch to ribose-5-phosphate

643 synthesis is relatively increased when the cycle progresses

644 through the S-phase (Vizan et al. 2009). In this article, the

645 results support this assertion, showing a decrease in this

646 balance whenHCT116 cells were treatedwith calceinAMor

647 when fibroblasts did not express functional CDK4, CDK6,

648 and CDK2 and their progress through the cell cycle was

649 compromised. Moreover, 13C incorporation from glucose

650 into RNA ribose was lower both in HCT116 treated with

651 calcein AM and in TKO MEFs, indicating that ribose-5-

652 phosphate synthesis decreases when the entrance of the cell

653 into the S-phase is inhibited. Additionally, in this work we

654 have shown that the imbalance in PPP induced by the inhi-

655 bition of CDK4 andCDK6 is able to slightly compromise the

656 balance in the overall central carbon metabolic network of

657 the cell, which is reflected in a non-significant change in the

658 levels of intermediary sugar phosphates (Fig. 4). The results

659 presented in this paper regarding the metabolic conse-

660 quences of the inhibition of CDK4 and CDK6 highlights the

661 metabolic requirements of the cell cycle and points to CDK4

662 and CDK6 as interesting drug targets to be explored in a

663 wider range of cancer types.

664 5 Concluding remarks

665 The forced imbalance of the PPP towards the oxidative

666 branch is a possible Achilles’ heel in the robust tumor

667 metabolic adaptation. It has been shown that effective anti-

668 tumor strategies against this target can be designed not only

669 with drugs that force this imbalance even further (Ramos-

670 Montoya et al. 2006), but also using drugs that recover the

671 oxidative/non-oxidative balance in the non-tumor cells.

672 The data presented here demonstrate that the inhibition of

673 CDK4 and CDK6 using calcein AM not only inhibits the

674 progression of the cell cycle, but also disrupts this oxida-

675 tive/non-oxidative imbalance of PPP, which has been

676 described as essential for tumor proliferation, reinforcing

677 the interest of CDK4 and CDK6 as targets in cancer

678 therapy.

679 Furthermore, we suggest that calcein could be a key

680 factor in the development of a new family of selective

681 cyclin D-dependent kinases inhibitors based on its struc-

682 ture. The improved understanding of the specific effects of

683 the inhibition of CDK4 and CDK6 on tumor cell central

684 metabolic networks shown in this paper opens up new

685 avenues for the design of combination therapies with drugs

686 that directly inhibit those pathways and also to the use of

687specific CDK4 and CDK6 inhibitors to impair metabolic

688adaptations that support tumor cell cycle progression.
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