8,156 research outputs found
Effect of high frequency ultrasounds on lycopene and total phenolic concentration, antioxidant properties and α-glucosidase inhibitory activity of tomato juice
Tomato juice was subjected to high frequency ultrasounds(378 and 583 kHz)at increasing energy densities (up to 250 MJ/m3). Results relevant to the treatments at high frequency providing an energy density of 250 MJ/m3 were compared with those obtained at 24 kHz delivering the same energy density. Lycopene and total phenolic concentration, as well as the α-glucosidase inhibitory activityof tomato juice, were not affected by ultrasound regardless the frequency and energy density. However, the antioxidant properties were negatively affected by high frequency ultrasounds
BLACK HOLES IN THREE-DIMENSIONAL DILATON GRAVITY THEORIES
Three dimensional black holes in a generalized dilaton gravity action theory
are analysed. The theory is specified by two fields, the dilaton and the
graviton, and two parameters, the cosmological constant and the Brans-Dicke
parameter. It contains seven different cases, of which one distinguishes as
special cases, string theory, general relativity and a theory equivalent to
four dimensional general relativity with one Killing vector. We study the
causal structure and geodesic motion of null and timelike particles in the
black hole geometries and find the ADM masses of the different solutions.Comment: 19 pages, latex, 4 figures as uuencoded postscript file
Probing singularities in quantum cosmology with curvature scalars
We provide further evidence that the canonical quantization of cosmological
models eliminates the classical Big Bang singularity, using the {\it
DeBroglie-Bohm} interpretation of quantum mechanics. The usual criterion for
absence of the Big Bang singularity in Friedmann-Robertson-Walker quantum
cosmological models is the non-vanishing of the expectation value of the scale
factor. We compute the `local expectation value' of the Ricci and Kretschmann
scalars, for some quantum FRW models. We show that they are finite for all
time. Since these scalars are elements of general scalar polynomials in the
metric and the Riemann tensor, this result indicates that, for the quantum
models treated here, the `local expectation value' of these general scalar
polynomials should be finite everywhere. Therefore, we have further evidence
that the quantization of the models treated here eliminates the classical Big
Bang singularity. PACS: 04.40.Nr, 04.60.Ds, 98.80.Qc.Comment: 9 pages, 6 figure
Thermodynamics of toroidal black holes
The thermodynamical properties of toroidal black holes in the grand canonical
ensemble are investigated using York's formalism. The black hole is enclosed in
a cavity with finite radius where the temperature and electrostatic potential
are fixed. The boundary conditions allow one to compute the relevant
thermodynamical quantities, e.g. thermal energy, entropy and specific heat.
This black hole is thermodynamically stable and dominates the grand partition
function. This means that there is no phase transition, as the one encountered
for spherical black holes.Comment: 11 pages, 2 eps figures, revte
A Quantum Cosmological Model With Static and Dynamic Wormholes
Quantization is performed of a Friedmann-Robertson-Walker universe filled
with a conformally invariant scalar field and a perfect fluid with equation of
state . A well-known discrete set of static quantum wormholes is
shown to exist for radiation (), and a novel continuous set is
found for cosmic strings (), the latter states having throat
radii of any size. In both cases wave-packet solutions to the Wheeler-DeWitt
equation are obtained with all the properties of evolving quantum wormholes. In
the case of a radiation fluid, a detailed analysis of the quantum dynamics is
made in the context of the Bohm-de Broglie interpretation. It is shown that a
repulsive quantum force inversely proportional to the cube of the scale factor
prevents singularities in the quantum domain. For the states considered, there
are no particle horizons either.Comment: LaTex file, 13 pages. To appear in General Relativity and Gravitatio
The Two-Dimensional Analogue of General Relativity
General Relativity in three or more dimensions can be obtained by taking the
limit in the Brans-Dicke theory. In two dimensions
General Relativity is an unacceptable theory. We show that the two-dimensional
closest analogue of General Relativity is a theory that also arises in the
limit of the two-dimensional Brans-Dicke theory.Comment: 8 pages, LaTeX, preprint DF/IST-17.9
Exact General Relativistic Perfect Fluid Disks with Halos
Using the well-known ``displace, cut and reflect'' method used to generate
disks from given solutions of Einstein field equations, we construct static
disks made of perfect fluid based on vacuum Schwarzschild's solution in
isotropic coordinates. The same method is applied to different exactsolutions
to the Einstein'sequations that represent static spheres of perfect fluids. We
construct several models of disks with axially symmetric perfect fluid halos.
All disks have some common features: surface energy density and pressures
decrease monotonically and rapidly with radius. As the ``cut'' parameter
decreases, the disks become more relativistic, with surface energy density and
pressure more concentrated near the center. Also regions of unstable circular
orbits are more likely to appear for high relativistic disks. Parameters can be
chosen so that the sound velocity in the fluid and the tangential velocity of
test particles in circular motion are less then the velocity of light. This
tangential velocity first increases with radius and reaches a maximum.Comment: 22 pages, 25 eps.figs, RevTex. Phys. Rev. D to appea
- …