23,914 research outputs found

    Absorption of Energy at a Metallic Surface due to a Normal Electric Field

    Full text link
    The effect of an oscillating electric field normal to a metallic surface may be described by an effective potential. This induced potential is calculated using semiclassical variants of the random phase approximation (RPA). Results are obtained for both ballistic and diffusive electron motion, and for two and three dimensional systems. The potential induced within the surface causes absorption of energy. The results are applied to the absorption of radiation by small metal spheres and discs. They improve upon an earlier treatment which used the Thomas-Fermi approximation for the effective potential.Comment: 19 pages (Plain TeX), 2 figures, 1 table (Postscript

    Experimental study of flow due to an isolated suction hole and a partially plugged suction slot

    Get PDF
    Details for construction of a model of a partially plugged, laminar flow control, suction slot and an isolated hole are presented. The experimental wind tunnel facility and instrumentation is described. Preliminary boundary layer velocity profiles (without suction model) are presented and shown to be in good agreement with the Blasius laminar profile. Recommendations for the completion of the study are made. An experimental program for study of transition on a rotating disk is described along with preliminary disturbance amplification rate data

    Measurements of flow phenomena induced by suction through perforated and partially plugged surfaces

    Get PDF
    Efforts were directed towards completing construction of the windtunnel test section, assembling instrumentation, programming the data acquisition and reduction system, adjusting the streamwise pressure gradient of the test section, calibrating the hot-wire anemometer probe, and constructing and testing a smoke generator. The test section was installed in the wind tunnel and is completely operational. The streamwise pressure gradient was adjusted to be nominally zero at a free-stream velocity of 3.05 m/s (10 ft/s). This was accomplished by adjusting the upper wall of the test section to be slightly divergent. The change in static pressure between any two streamwise locations in the test section was less than one percent of the free-stream dynamic pressure. A suitable means was found for accurately calibrating the hot-wire probe which is used to measure boundary-layer velocity profiles and fluctuating velocities

    Magnetic Dipole Absorption of Radiation in Small Conducting Particles

    Full text link
    We give a theoretical treatment of magnetic dipole absorption of electromagnetic radiation in small conducting particles, at photon energies which are large compared to the single particle level spacing, and small compared to the plasma frequency. We discuss both diffusive and ballistic electron dynamics for particles of arbitrary shape. The conductivity becomes non-local when the frequency is smaller than the frequency \omega_c characterising the transit of electrons from one side of the particle to the other, but in the diffusive case \omega_c plays no role in determining the absorption coefficient. In the ballistic case, the absorption coefficient is proportional to \omega^2 for \omega << \omega_c, but is a decreasing function of \omega for \omega >> \omega_c.Comment: 25 pages of plain TeX, 2 postscipt figure

    Radiation-induced nucleic acid synthesis in L cells under energy deprivation

    Get PDF
    Radiation induced nucleic acid synthesis in energy deprived L cell

    Neutral winds derived from IRI parameters and from the HWM87 wind model for the sundial campaign of September, 1986

    Get PDF
    Meridional neutral winds derived from the height of the maximum ionization of the F2 layer are compared with values from results of the HWM87 empirical neutral wind model. The time period considered is the SUNDIAL-2 campaign, 21 Sept. through 5 Oct. 1986. Winds were derived from measurements by a global network of ionosondes, as well as from similar quantities generated by the International Reference Ionosphere. Global wind patterns from the three sources are similar. Differences tend to be the result of local or transient phenomena that are either too rapid to be described by the order of harmonics of the empirical models, or are the result of temporal changes not reproduced by models based on average conditions

    Brownian Motion Model of Quantization Ambiguity and Universality in Chaotic Systems

    Full text link
    We examine spectral equilibration of quantum chaotic spectra to universal statistics, in the context of the Brownian motion model. Two competing time scales, proportional and inversely proportional to the classical relaxation time, jointly govern the equilibration process. Multiplicity of quantum systems having the same semiclassical limit is not sufficient to obtain equilibration of any spectral modes in two-dimensional systems, while in three-dimensional systems equilibration for some spectral modes is possible if the classical relaxation rate is slow. Connections are made with upper bounds on semiclassical accuracy and with fidelity decay in the presence of a weak perturbation.Comment: 13 pages, 6 figures, submitted to Phys Rev

    Suppression of Zeno effect for distant detectors

    Full text link
    We describe the influence of continuous measurement in a decaying system and the role of the distance from the detector to the initial location of the system. The detector is modeled first by a step absorbing potential. For a close and strong detector, the decay rate of the system is reduced; weaker detectors do not modify the exponential decay rate but suppress the long-time deviations above a coupling threshold. Nevertheless, these perturbing effects of measurement disappear by increasing the distance between the initial state and the detector, as well as by improving the efficiency of the detector.Comment: 4 pages, 4 figure

    Collective versus single-particle effects in the optical spectra of finite electronic quantum systems

    Full text link
    We study optical spectra of finite electronic quantum systems at frequencies smaller than the plasma frequency using a quasi-classical approach. This approach includes collective effects and enables us to analyze how the nature of the (single-particle) electron dynamics influences the optical spectra in finite electronic quantum systems. We derive an analytical expression for the low-frequency absorption coefficient of electro-magnetic radiation in a finite quantum system with ballistic electron dynamics and specular reflection at the boundaries: a two-dimensional electron gas confined to a strip of width a (the approach can be applied to systems of any shape and electron dynamics -- diffusive or ballistic, regular or irregular motion). By comparing with results of numerical computations using the random-phase approximation we show that our analytical approach provides a qualitative and quantitative understanding of the optical spectrum.Comment: 4 pages, 3 figure

    Feelings of dual-insecurity among European workers: A multi-level analysis

    Get PDF
    This article analyses European Social Survey data for 22 countries. We assess the relationship between feelings of employment and income insecurity (dual-insecurity) among workers and national flexicurity policies in the areas of lifelong learning, active labour market policy, modern social security systems and flexible and reliable contractual arrangements. We find that dual-insecurity feelings are lower in countries that score better on most flexicurity polices, but these effects are in all cases outweighed by levels of GDP per capita. Thus feelings of insecurity are reduced more by the affluence of a country than by its social policies. However, affluence is strongly correlated with the policy efforts designed to reduce insecurity, especially active labour market policies and life-long learning, two policy areas that are threatened with cuts as a result of austerity
    • …
    corecore