982 research outputs found
A proof of the Grothendieck-Serre conjecture on principal bundles over regular local rings containing infinite fields
Let R be a regular local ring, containing an infinite field. Let G be a
reductive group scheme over R. We prove that a principal G-bundle over R is
trivial, if it is trivial over the fraction field of R.Comment: Section "Formal loops and affine Grassmannians" is removed as this is
now covered in arXiv:1308.3078. Exposition is improved and slightly
restructured. Some minor correction
Improvement of grain sorghum nutritive properties using modern genetic and biotechnological methods
The paper presents a review of the studies on the use of genetic engineering and genome editing tools for improving nutritional properties of sorghum grain. As a result of experiments performed over the past 5-7 years by several research groups, the created transgenic lines carry genetic constructs for RNA silencing of different kafirin sub-classes (prolamins of sorghum grain). The CRISPR/Cas9 genome editing experiments have yielded mutants with deletions and insertions in the signal sequence of the gene encoding the 22 kDa Ξ±-kafirin in sorghum. These lines and mutants were characterized by improved in vitro digestibility of grain proteins, altered ultrastructure of protein bodies and an increased content of lysine. RNA silencing of Ξ±-kafirin increased the digestibility of proteins of both raw and cooked flour, while silencing of Ξ³-kafirin led to improved digestibility of proteins of only raw flour. The lines with Ξ±-kafirin silencing have kernels with the floury endosperm type that discourages their direct commercial use because of fragility and reduced tolerance to fungal contamination; however, these lines can be used as donors of high digestibility trait when crossed with sorghum lines adapted to local conditions to improve their nutritional value. Kernels of the lines with Ξ³-kafirin silencing may have different endosperm types: floury, vitreous, or a modified type with vitreous endosperm interspersed in the floury endosperm. This fact indicates the possibility of producing agronomically important sorghum lines with high kafirin digestibility and hard endosperm. The increased lysine level in kernels of sorghum lines with the suppressed synthesis of kafirins may be caused by rebalancing of protein synthesis in endosperm of developing kernels due to the synthesis of other proteins, including those with a higher content of essential amino acids. Alongside with improving the digestibility of kafirins, the genetic engineering approach allowed the creation of sorghum lines with a high content of provitamin A in grain and its increased stability during long-term storage. The results of these works show that it is promising to use RNA-interference and genome editing for creating sorghum lines with improved nutritional value of grain
Experimental investigation of high-energy photon splitting in atomic fields
The new data analysis of the experiment, where the photon splitting in the
atomic fields has been observed for the first time, is presented. This
experiment was performed at the tagged photon beam of the ROKK-1M facility at
the VEPP-4M collider. In the energy region of 120-450 MeV, the statistics of
photons incident on the BGO target was collected. About 400
candidates to the photon splitting events were reconstructed. Within the
attained experimental accuracy, the experimental results are consistent with
the cross section calculated exactly in an atomic field. The predictions
obtained in the Born approximation significantly differ from the experimental
results.Comment: 11 pages, 6 figures, LaTe
EXPERIENCE OF SURGICAL TREATMENT OF BENIGN TUMORS AND DYSPLATIC PROCESSES OF THE MANDIBLE BY THE METHOD OF REPLANTATION OF THE RECTURAL BONE, SUBJECTED TO FREEZING
The purpose of the study is the development of indications and evaluation of the long-term results of surgical treatmentΒ of benign tumors and dysplastic processes of the mandible by the method of replantation of resected bone exposed toΒ extraorganic freezing. Material and methods. A method for the surgical treatment of benign tumors and dysplasticΒ processes of the mandible has been developed. It involves resection of an afflicted by pathological process segmentΒ of bone within healthy tissues, its mechanical processing, freezing in liquid nitrogen followed by slow thawing, andΒ replantation. The evaluation of the treatment results has been carried out on the base of clinical, radiation and functionalΒ research methods. Long-term follow-up after surgery has been ranged from one to 25 years. Results and discussion.Β Positive results of surgical treatment were recorded in 72 patients (88,9 %). The indications for the developed methodΒ use have been established. It was found that the reconstruction of the mandible with a resected bone segment exposedΒ to extraorganic cryosurgery, eliminates the recurrence of a benign tumor, provides for the restoration of the anatomicalΒ integrity of the jaw, and reduces the invasiveness of the operation. Conclusion. Long-term clinical experience hasΒ shown that mandible direct reconstruction in the surgical treatment of benign tumors and dysplastic processes withΒ the method of resection, external freezing of the afflicted jaw area and its replantation is available, simple, and highlyΒ effective and can be recommended in the practice of medical institutions
ΠΡΡΠ΅ΠΊΡΡ ΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ Π³Π΅Π»ΠΈΠΉ-ΠΊΠΈΡΠ»ΠΎΡΠΎΠ΄Π½ΠΎΠΉ ΡΠΌΠ΅ΡΠΈ Π½Π° ΡΡΠ°Π½ΡΠΏΠΎΡΡ ΠΊΠΈΡΠ»ΠΎΡΠΎΠ΄Π°, ΡΠ΅Π½ΡΡΠ°Π»ΡΠ½ΡΡ ΠΈ Π»Π΅Π³ΠΎΡΠ½ΡΡ Π³Π΅ΠΌΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΡ Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ Ρ ΡΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΠ±ΡΡΡΡΠΊΡΠΈΠ²Π½ΠΎΠΉ Π±ΠΎΠ»Π΅Π·Π½ΡΡ Π»Π΅Π³ΠΊΠΈΡ Ρ Π³ΠΈΠΏΠ΅ΡΠΊΠ°ΠΏΠ½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΡΡΡΠΎΠΉ Π΄ΡΡ Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΡΡΡΡ
The aim of this study is to assessment of the rapid effects of t-He/O2 in comparison with the effective level of high-flow oxygen therapy (HPO) on the main indicators of oxygen transport, central and pulmonary hemodynamics in patients with chronic obstructive pulmonary disease (COPD) with hypercapnic acute respiratory failure.Methods. A total of 33 (29 male, 4 female) patients were included in a randomized, comparative study with exacerbation of COPD and acute respiratory failure, admitted to the department of anesthesiology and intensive care of D.D.Pletnev City Teaching Hospital, Moscow Healthcare Department, between March and May 2017. Patients were divided into two groups: the 1st group β 18 patients (15 male, 3 female) receiving t-He/O2 (He β 70%, O2 β 30% at a temperature of 70 Β°C; the 2nd group β 15 patients (14 male, 1 female) receiving high-flow oxygen therapy with FiO2 β 30% through a Venturi mask for the treatment of ODN against the background of basic therapy of the underlying disease, according to the recommendations of GOLD 2016. Assessment of oxygen transport, central and pulmonary hemodynamics was carried out through the definition of indicators: saturation of hemoglobin of arterial blood with oxygen (SaO2), saturation of venous blood hemoglobin with oxygen (SvO2), partial pressure of arterial blood oxygen (Π aO2), partial pressure of arterial blood carbon dioxide (Π aCO2), partial pressure of mixed venous blood oxygen (Π vO2), partial pressure of mixed venous blood carbon dioxide (Π vCO2),mean pulmonary artery pressure (MPAP), cardiac output (SV), heart index (CI), pulmonary vascular resistance (RVRI), impact volume index (SVI), pulmonary vascular resistance index (RVRI), left ventricular shock index (LVSW), right ventricular shock index (RVSW), system speed of oxygen delivery (DO2), the coeffiCIent of extraction of oxygen (ExO2), shunt fractions (venous mixing) (Qs / Qt)).Results. Short-term inhalation with a thermal helium-oxygen mixture in patients with COPD with hypercapnic acute respiratory failure is accompanied by an increase in SaO2 94,1 (92,8; 97,5) initially 86,1 (85,9; 88,1), Π Π°Π2 (78,1 (74,8; 80,1) initially 55,2 (52,5; 65,3)), decline Π Π°Π‘Π2 (57,4 (54,2; 66.4) initially 65,4 (58,1; 67,2)). Thermal helium-oxygen mixture leads to stabilization of hemodynamics, improving the work of the right and left heart: decline MPAP 28,2 (24,3; 32,8) initially 43,3 (40,1; 49,5), RVRI (285,3 (258,4; 362,7) initially 592,1 (498,2; 623,5)), RVSW (16,2 (14,1; 21,4) initially 25,8 (21,8; 32)), HR 91,1 (86,4; 98,7) initially 115 ((105; 118) to increase LVSW (58,2 (49,8; 62,4) initially 35,5 (28,9; 42,1)), SVI 36,2 (31,8; 42,1) initially 31,5 (28,4; 36,2). Elimination of arterial hypoxemia and a positive effect on hemodynamics ensures adequate oxygen transport to tissues, which is expressed in the normalization of DO2 values DO2 (980,4 (858,45; 1208) initially 280,3 (270,34; 387,4)) ΠΈ ExO2 (27,8 (25,6; 34,5) initially 32,1 (30,7; 39,8) and decline Qs/Qt. (28,7 (18,6; 35,4) initially 42,8 (39,2; 49,1).Conclusion. Short-term therapy of patients with COPD with hypercapnic acute respiratory failure using the t-He/O2 method, in comparison with high-flow oxygen therapy, improves blood oxygenation and hemodynamics. Elimination of arterial hypoxemia and a positive effect on hemodynamics made it possible to ensure adequate oxygen transport to tissues, which was expressed in the normalization of transport values, oxygen delivery, and a decrease in the shunt fraction.Π¦Π΅Π»ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ²ΠΈΠ»Π°ΡΡ ΠΎΡΠ΅Π½ΠΊΠ° Π±ΡΡΡΡΡΡ
ΡΡΡΠ΅ΠΊΡΠΎΠ² ΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ Π³Π΅Π»ΠΈΠΉ-ΠΊΠΈΡΠ»ΠΎΡΠΎΠ΄Π½ΠΎΠΉ ΡΠΌΠ΅ΡΠΈ (t-He/O2) Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ Ρ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΠΌ ΡΡΠΎΠ²Π½Π΅ΠΌ Π²ΡΡΠΎΠΊΠΎΠΏΠΎΡΠΎΡΠ½ΠΎΠΉ ΠΎΠΊΡΠΈΠ³Π΅Π½ΠΎΡΠ΅ΡΠ°ΠΏΠΈΠΈ (ΠΠΠ) Π½Π° ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ ΡΡΠ°Π½ΡΠΏΠΎΡΡΠ° ΠΊΠΈΡΠ»ΠΎΡΠΎΠ΄Π°, ΡΠ΅Π½ΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΈ Π»Π΅Π³ΠΎΡΠ½ΠΎΠΉ Π³Π΅ΠΌΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈ ΠΊΠΈ Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ Ρ
ΡΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΠ±ΡΡΡΡΠΊΡΠΈΠ²Π½ΠΎΠΉ Π±ΠΎΠ»Π΅Π·Π½ΡΡ Π»Π΅Π³ΠΊΠΈΡ
(Π₯ΠΠΠ) Ρ Π³ΠΈΠΏΠ΅ΡΠΊΠ°ΠΏΠ½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΡΡΡΠΎΠΉ Π΄ΡΡ
Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΡ ΡΡΡ (ΠΠΠ).ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ. Π ΡΠ°Π½Π΄ΠΎΠΌΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ΅ ΡΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π²ΠΊΠ»ΡΡΠ΅Π½Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΡ (n = 33: 29 ΠΌΡΠΆΡΠΈΠ½, 4 ΠΆΠ΅Π½ΡΠΈΠ½Ρ) Ρ ΠΎΠ±ΠΎΡΡΡΠ΅Π½ΠΈΠ΅ΠΌ Π₯ΠΠΠ ΠΈ ΠΠΠ, ΠΏΠΎΡΡΡΠΏΠΈΠ²ΡΠΈΠ΅ Π² ΠΎΡΠ΄Π΅Π»Π΅Π½ΠΈΠ΅ Π°Π½Π΅ΡΡΠ΅Π·ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ ΡΠ΅Π°Π½ΠΈΠΌΠ°ΡΠΈΠΈ ΠΠΎΡΡΠ΄Π°ΡΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ Π±ΡΠ΄ΠΆΠ΅ΡΠ½ΠΎΠ³ΠΎ ΡΡΡΠ΅ΠΆΠ΄Π΅Π½ΠΈΡ Π·Π΄ΡΠ°Π²ΠΎΠΎΡ
ΡΠ°Π½Π΅Π½ΠΈΡ Π³ΠΎΡΠΎΠ΄Π° ΠΠΎΡΠΊΠ²Ρ Β«ΠΠΎΡΠΎΠ΄ΡΠΊΠ°Ρ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠ°Ρ Π±ΠΎΠ»ΡΠ½ΠΈΡΠ° ΠΈΠΌΠ΅Π½ΠΈ Π.Π.ΠΠ»Π΅ΡΠ½Π΅Π²Π° ΠΠ΅ΠΏΠ°ΡΡΠ°ΠΌΠ΅Π½ΡΠ° Π·Π΄ΡΠ°Π²ΠΎΠΎΡ
ΡΠ°Π½Π΅Π½ΠΈΡ Π³ΠΎΡΠΎΠ΄Π° ΠΠΎΡΠΊΠ²ΡΒ» Π² ΠΏΠ΅ΡΠΈΠΎΠ΄ Ρ ΠΌΠ°ΡΡΠ° ΠΏΠΎ ΠΌΠ°ΠΉ 2017 Π³. ΠΠ°ΡΠΈΠ΅Π½ΡΡ Π±ΡΠ»ΠΈ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Ρ Π½Π° 2 Π³ΡΡΠΏΠΏΡ. ΠΠΎΠ»ΡΠ½ΡΠ΅ 1-ΠΉ Π³ΡΡΠΏΠΏΡ (n = 18: 15 ΠΌΡΠΆΡΠΈΠ½, 3 ΠΆΠ΅Π½ΡΠΈΠ½Ρ) ΠΏΠΎΠ»ΡΡΠ°Π»ΠΈ t-ΠΠ΅/Π2 (ΠΠ΅ β 70 %, Π2β 30 % ΠΏΡΠΈ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ΅ 70 Β°Π‘; 2-ΠΉ (n = 15: 14 ΠΌΡΠΆΡΠΈΠ½, 1 ΠΆΠ΅Π½ΡΠΈΠ½Π°) β ΠΠΠ (ΡΡΠ°ΠΊΡΠΈΠΎΠ½Π½Π°Ρ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡ ΠΊΠΈΡΠ»ΠΎΡΠΎΠ΄Π° Π²ΠΎ Π²Π΄ΡΡ
Π°Π΅ΠΌΠΎΠΉ Π³Π°Π·ΠΎΠ²ΠΎΠΉ ΡΠΌΠ΅ΡΠΈ (FiO2) β 30 %) ΡΠ΅ΡΠ΅Π· ΠΌΠ°ΡΠΊΡ ΠΠ΅Π½ΡΡΡΠΈ Π΄Π»Ρ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ ΠΠΠ Π½Π° ΡΠΎΠ½Π΅ Π±Π°Π·ΠΈΡΠ½ΠΎΠΉ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠ³ΠΎ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΡ, ΡΠΎΠ³Π»Π°ΡΠ½ΠΎ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°ΡΠΈΡΠΌ ΠΠ»ΠΎΠ±Π°Π»ΡΠ½ΠΎΠΉ ΠΈΠ½ΠΈΡΠΈΠ°ΡΠΈΠ²Ρ ΠΏΠΎ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠ΅, Π»Π΅ΡΠ΅Π½ΠΈΡ ΠΈ ΠΏΡΠΎΡΠΈΠ»Π°ΠΊΡΠΈΠΊΠ΅ Π₯ΠΠΠ (Global Initiative for Chronic Obstructive Lung Disease β GOLD, 2016). ΠΡΠ΅Π½ΠΊΠ° ΡΡΠ°Π½ΡΠΏΠΎΡΡΠ° ΠΊΠΈΡΠ»ΠΎΡΠΎΠ΄Π°, ΡΠ΅Π½ΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΈ Π»Π΅Π³ΠΎΡΠ½ΠΎΠΉ Π³Π΅ΠΌΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»Π°ΡΡ ΡΠ΅ΡΠ΅Π· ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ Π½Π°ΡΡΡΠ΅Π½ΠΈΡ Π³Π΅ΠΌΠΎΠ³Π»ΠΎΠ±ΠΈΠ½Π° Π°ΡΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΠΊΡΠΎΠ²ΠΈ ΠΊΠΈΡΠ»ΠΎΡΠΎΠ΄ΠΎΠΌ (SaO2), Π½Π°ΡΡΡΠ΅Π½ΠΈΡ Π³Π΅ΠΌΠΎΠ³Π»ΠΎΠ±ΠΈΠ½Π° Π²Π΅Π½ΠΎΠ·Π½ΠΎΠΉ ΠΊΡΠΎΠ²ΠΈ ΠΊΠΈΡΠ»ΠΎΡΠΎΠ΄ΠΎΠΌ (SvO2), ΠΏΠ°ΡΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ ΠΊΠΈΡΠ»ΠΎΡΠΎΠ΄Π° Π°ΡΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΠΊΡΠΎΠ²ΠΈ (Π aO2), ΠΏΠ°ΡΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ ΡΠ³Π»Π΅ΠΊΠΈΡΠ»ΠΎΡΡ Π°ΡΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΠΊΡΠΎΠ²ΠΈ (Π aCO2), ΠΏΠ°ΡΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ ΠΊΠΈΡΠ»ΠΎΡΠΎΠ΄Π° ΡΠΌΠ΅ΡΠ°Π½Π½ΠΎΠΉ Π²Π΅Π½ΠΎΠ·Π½ΠΎΠΉ ΠΊΡΠΎΠ²ΠΈ (Π vO2), ΠΏΠ°ΡΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ ΡΠ³Π»Π΅ΠΊΠΈΡΠ»ΠΎΡΡ ΡΠΌΠ΅ΡΠ°Π½Π½ΠΎΠΉ Π²Π΅Π½ΠΎΠ·Π½ΠΎΠΉ ΠΊΡΠΎΠ²ΠΈ (Π vCO2), ΡΡΠ΅Π΄Π½Π΅Π³ΠΎ Π΄Π°Π²Π»Π΅Π½ΠΈΡ Π² Π»Π΅Π³ΠΎΡΠ½ΠΎΠΉ Π°ΡΡΠ΅ΡΠΈΠΈ (MPAP), ΡΠ΅ΡΠ΄Π΅ΡΠ½ΠΎΠ³ΠΎ Π²ΡΠ±ΡΠΎΡΠ° (SV), ΡΠ΅ΡΠ΄Π΅ΡΠ½ΠΎΠ³ΠΎ ΠΈΠ½Π΄Π΅ΠΊΡΠ° (CI), ΠΈΠ½Π΄Π΅ΠΊΡΠ° ΡΠ΄Π°ΡΠ½ΠΎΠ³ΠΎ ΠΎΠ±ΡΠ΅ΠΌΠ° (SVI), ΠΈΠ½Π΄Π΅ΠΊΡΠ° Π»Π΅Π³ΠΎΡΠ½ΠΎΠ³ΠΎ ΡΠΎΡΡΠ΄ΠΈΡΡΠΎΠ³ΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ (RVRI), ΠΈΠ½Π΄Π΅ΠΊΡΠ° ΡΠ΄Π°ΡΠ½ΠΎΠΉ ΡΠ°Π±ΠΎΡΡ Π»Π΅Π²ΠΎΠ³ΠΎ (LVSW) ΠΈ ΠΏΡΠ°Π²ΠΎΠ³ΠΎ (RVSW) ΠΆΠ΅Π»ΡΠ΄ΠΎΡΠΊΠΎΠ², ΡΠΈΡΡΠ΅ΠΌΠ½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ Π΄ΠΎΡΡΠ°Π²ΠΊΠΈ ΠΊΠΈΡΠ»ΠΎΡΠΎΠ΄Π° (DO2), ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠΈ ΠΊΠΈΡΠ»ΠΎΡΠΎΠ΄Π° (ExO2), ΡΡΠ°ΠΊΡΠΈΠΈ ΡΡΠ½ΡΠ° (Π²Π΅Π½ΠΎΠ·Π½ΠΎΠ³ΠΎ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠΈΠ²Π°Π½ΠΈΡ) (Qs / Qt)).Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΡΠ°ΡΠΊΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½Π°Ρ ΡΠ΅ΡΠ°ΠΏΠΈΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ t-ΠΠ΅ / Π2 ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² c Π₯ΠΠΠ Ρ Π³ΠΈΠΏΠ΅ΡΠΊΠ°ΠΏΠ½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΡΡΡΠΎΠΉ Π΄ΡΡ
Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΡΡΡΡ ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΠΠΠ Π΄ΠΎΡΡΠΎΠ²Π΅ΡΠ½ΠΎ ΡΠΎΠΏΡΠΎΠ²ΠΎΠΆΠ΄Π°Π»Π°ΡΡ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΠ΅ΠΌ SaO2 (94,1 (92,8; 97,5), ΠΈΡΡ
ΠΎΠ΄Π½ΠΎ β 86,1 (85,9; 88,1)); Π Π°Π2 (78,1 (74,8; 80,1), ΠΈΡΡ
ΠΎΠ΄Π½ΠΎ β 55,2 (52,5; 65,3)); Π Π°Π2 (78,1 (74,8; 80,1), ΠΈΡΡ
ΠΎΠ΄Π½ΠΎ β 55,2 (52,5; 65,3)); ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π Π°Π‘Π2 (57,4 (54,2; 66,4), ΠΈΡΡ
ΠΎΠ΄Π½ΠΎ β 65,4 (58,1; 67,2)); ΡΠ»ΡΡΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΠ°Π±ΠΎΡΡ ΠΏΡΠ°Π²ΡΡ
ΠΈ Π»Π΅Π²ΡΡ
ΠΎΡΠ΄Π΅Π»ΠΎΠ² ΡΠ΅ΡΠ΄ΡΠ° β ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ ΠPAP (28,2 (24,3; 32,8), ΠΈΡΡ
ΠΎΠ΄Π½ΠΎ β 43,3 (40,1; 49,5)); RVRI (285,3 (258,4; 362,7), ΠΈΡΡ
ΠΎΠ΄Π½ΠΎ β 592,1 (498,2; 623,5)); RVSW (16,2 (14,1; 21,4), ΠΈΡΡ
ΠΎΠ΄Π½ΠΎ β 25,8 (21,8; 32)); HR (91,1 (86,4; 98,7), ΠΈΡΡ
ΠΎΠ΄Π½ΠΎ β 115 ((105; 118)); ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΠ΅ΠΌ LVSW (58,2 (49,8; 62,4), ΠΈΡΡ
ΠΎΠ΄Π½ΠΎ β 35,5 (28,9; 42,1)); SVI (36,2 (31,8; 42,1), ΠΈΡΡ
ΠΎΠ΄Π½ΠΎ β 31,5 (28,4; 36,2)). Π£ΡΡΡΠ°Π½Π΅Π½ΠΈΠ΅ Π°ΡΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ Π³ΠΈΠΏΠΎΠΊΡΠ΅ΠΌΠΈΠΈ ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π²Π»ΠΈΡΠ½ΠΈΠ΅ Π½Π° Π³Π΅ΠΌΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΡ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΡΡ Π°Π΄Π΅ΠΊΠ²Π°ΡΠ½ΡΠΉ ΡΡΠ°Π½ΡΠΏΠΎΡΡ ΠΊΠΈΡΠ»ΠΎΡΠΎΠ΄Π° ΠΊ ΡΠΊΠ°Π½ΡΠΌ, ΡΡΠΎ Π²ΡΡΠ°ΠΆΠ°Π»ΠΎΡΡ Π² Π½ΠΎΡΠΌΠ°Π»ΠΈΠ·Π°ΡΠΈΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ DO2 (980,4 (858,45; 1208), ΠΈΡΡ
ΠΎΠ΄Π½ΠΎ β 280 (270,34; 387,4)); ExO2 (27,8 (25,6; 34,5), ΠΈΡΡ
ΠΎΠ΄Π½ΠΎ β 32,1 (30,7; 39,8)) ΠΈ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠΈ Qs / Qt (28,7 (18,6; 35,4), ΠΈΡΡ
ΠΎΠ΄Π½ΠΎ β 42,8 (39,2; 49,1)).ΠΠ°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅. ΠΡΠΈ ΠΊΡΠ°ΡΠΊΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ Π₯ΠΠΠ Ρ Π³ΠΈΠΏΠ΅ΡΠΊΠ°ΠΏΠ½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΡΡΡΠΎΠΉ Π΄ΡΡ
Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΡΡΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ t-ΠΠ΅/Π2 ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΠΠΠ ΡΠ»ΡΡΡΠ°Π΅ΡΡΡ ΠΎΠΊΡΠΈΠ³Π΅Π½Π°ΡΠΈΡ ΠΊΡΠΎΠ²ΠΈ, Π³Π΅ΠΌΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ°. Π£ΡΡΡΠ°Π½Π΅Π½ΠΈΠ΅ Π°ΡΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ Π³ΠΈΠΏΠΎΠΊΡΠ΅ΠΌΠΈΠΈ ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π²Π»ΠΈΡΠ½ΠΈΠ΅ Π½Π° Π³Π΅ΠΌΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΡ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΈ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΡΡ Π°Π΄Π΅ΠΊΠ²Π°ΡΠ½ΡΠΉ ΡΡΠ°Π½ΡΠΏΠΎΡΡ ΠΊΠΈΡΠ»ΠΎΡΠΎΠ΄Π° ΠΊ ΡΠΊΠ°Π½ΡΠΌ, ΡΡΠΎ Π²ΡΡΠ°ΠΆΠ°Π»ΠΎΡΡ Π² Π½ΠΎΡΠΌΠ°Π»ΠΈΠ·Π°ΡΠΈΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠ°Π½ΡΠΏΠΎΡΡΠ°, Π΄ΠΎΡΡΠ°Π²ΠΊΠΈ ΠΊΠΈΡΠ»ΠΎΡΠΎΠ΄Π° ΠΈ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠΈ ΡΡΠ°ΠΊΡΠΈΠΈ ΡΡΠ½ΡΠ°
Structures and photophysical properties of 3,4-diaryl-1H-pyrrol-2,5-diimines and 2,3-diarylmaleimides
Structural features of 3,4-diaryl-1H-pyrrol-2,5-diimines and their derivatives have been studied by molecular spectroscopy techniques, single-crystal X-ray diffraction, and DFT calculations. According to the theoretical calculations, the diimino tautomeric form of 3,4-diaryl-1H-pyrrol-2,5-diimines is more stable in solution than the imino-enamino form. We also found that the structurally related 2,3 exist in the solid state in the dimeric diketo form. 3,4-Diary1-1H-pyrrol-2,5-diimines and 2,3-diarylmaleimides exhibit fluorescence in the blue region of the visible spectrum. The fluorescence spectra have large Stokes shifts. Aryl substituents at the 3,4-positions of 1H-pyrrol-2,5-diimine do not significantly affect fluorescence properties. The insertion of donor substituents into 2,3diarylmaleimides leads to bathochromic shift of emission bands with hyperchromic effect. (C) 2017 Elsevier B.V. All rights reserved
- β¦