6,053 research outputs found

    Adiabatic Cooling with Non-Abelian Anyons

    Full text link
    We show in this Letter that the ground state degeneracy associated with the presence of non-Abelian anyons can be probed by using an adiabatic cooling process based on the non-Abelian entropy. In particular, we show that when the number of such anyons is increased adiabatically at sufficiently low temperatures, the non-Abelian liquid undergoes cooling, whereas heating occurs in the Abelian case. Estimates are provided for the cooling power produced by the non-Abelian anyon refrigerator, and its implementation in non-Abelian fractional quantum Hall liquids is discussed

    Baryon electric dipole moments from strong CP violation

    Get PDF
    The electric dipole form factors and moments of the ground state baryons are calculated in chiral perturbation theory at next-to-leading order. We show that the baryon electric dipole form factors at this order depend only on two combinations of low-energy constants. We also derive various relations that are free of unknown low-energy constants. We use recent lattice QCD data to calculate all baryon EDMs. In particular, we find d_n = -2.9\pm 0.9 and d_p = 1.1\pm 1.1 in units of 10^{-16} e \theta_0 cm. Finite volume corrections to the moments are also worked out. We show that for a precision extraction from lattice QCD data, the next-to-leading order terms have to be accounted for.Comment: 30 pages, 8 figures, to appear in JHE

    Light quark mass dependence in heavy quarkonium physics

    Get PDF
    The issue of chiral extrapolations in heavy quarkonium systems is discussed. We show that the light quark mass dependence of the properties of heavy quarkonia is not always suppressed. For quarkonia close to an open flavor threshold, even a nonanalytic chiral extrapolation is needed. Both these nontrivial facts are demonstrated to appear in the decay widths of the hindered M1 transitions between the first radially excited and ground state P-wave charmonia. The results at a pion mass of about 500 MeV could deviate from the value at the physical pion mass by a factor of two. Our findings show the necessity of performing chiral extrapolations for lattice simulations of heavy quarkonium systems.Comment: 5 pages, 5 figures. Version to appear in Phys. Rev. Let

    Cumulants of the QCD topological charge distribution

    Get PDF
    The distribution of the QCD topological charge can be described by cumulants, with the lowest one being the topological susceptibility. The vacuum energy density in a theta-vacuum is the generating function for these cumulants. In this paper, we derive the vacuum energy density in SU(2) chiral perturbation theory up to next-to-leading order keeping different up and down quark masses, which can be used to calculate any cumulant of the topological charge distribution. We also give the expression for the case of SU(N) with degenerate quark masses. In this case, all cumulants depend on the same linear combination of low-energy constants and chiral logarithm, and thus there are sum rules between the N-flavor quark condensate and the cumulants free of next-to-leading order corrections.Comment: match the version published in PL

    Knowledge Refinement via Rule Selection

    Full text link
    In several different applications, including data transformation and entity resolution, rules are used to capture aspects of knowledge about the application at hand. Often, a large set of such rules is generated automatically or semi-automatically, and the challenge is to refine the encapsulated knowledge by selecting a subset of rules based on the expected operational behavior of the rules on available data. In this paper, we carry out a systematic complexity-theoretic investigation of the following rule selection problem: given a set of rules specified by Horn formulas, and a pair of an input database and an output database, find a subset of the rules that minimizes the total error, that is, the number of false positive and false negative errors arising from the selected rules. We first establish computational hardness results for the decision problems underlying this minimization problem, as well as upper and lower bounds for its approximability. We then investigate a bi-objective optimization version of the rule selection problem in which both the total error and the size of the selected rules are taken into account. We show that testing for membership in the Pareto front of this bi-objective optimization problem is DP-complete. Finally, we show that a similar DP-completeness result holds for a bi-level optimization version of the rule selection problem, where one minimizes first the total error and then the size
    corecore