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The distribution of the QCD topological charge can be described by cumulants, with the lowest one being
the topological susceptibility. The vacuum energy density in a 6-vacuum is the generating function for
these cumulants. In this paper, we derive the vacuum energy density in SU(2) chiral perturbation theory
up to next-to-leading order keeping different up and down quark masses, which can be used to calculate

any cumulant of the topological charge distribution. We also give the expression for the case of SU(N)
with degenerate quark masses. In this case, all cumulants depend on the same linear combination of
low-energy constants and chiral logarithm, and thus there are sum rules between the N-flavor quark
condensate and the cumulants free of next-to-leading order corrections.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Because of the axial U(1) anomaly, there exists a 6-term in
quantum chromodynamics (QCD) which is a topological term. The
partition function of QCD in a #-vacuum is given by

26) = / [DGI[DqI[Dg] e~ Se0IC-4-01-16Q (1)

where SqcplG, g, q] is the QCD action at =0 with G and g being
the gluon and quark fields, respectively, and Q is the topological
charge

1
Q =25 5 €upo f d*xG" (x)GP7 (%) , (2)

with G*Y(x) the gluon field strength tensor. In the Euclidean space
with a finite space-time volume V, the partition function Z(6)
is dominated by the ground state, i.e. vacuum, energy of QCD for
large enough V (see, e.g. Ref. [1]), and we have

1
z@)=e Veur®  or evac(0) ==, InZ(0), 3)

where ey,c(0) is the vacuum energy density in the 6-vacuum. The
distribution of the topological charge can be described in terms of
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moments, which are the expectation values (Q2"),_, with positive
integer n, or cumulants defined as

dznevec @)
n="gom

(4)

6=0
The leading cumulant is the topological susceptibility, c; = x;. It
and the fourth cumulant are given by the well-known formulae

el et (@) sled) . ®

These topological quantities are important to understand the QCD
vacuum as well as to extract physical observables from lattice sim-
ulations at a fixed topology [1,2]. They can be measured on lattice
using various methods, see, e.g., Refs. [3-19].

For large volume and small quark masses, the strong interac-
tion dynamics is determined by the Goldstone bosons originating
from the spontaneous breaking of the light-quark chiral symme-
try, and thus can be well described by chiral perturbation theory
(CHPT) [20,21]. Both of x; and c4 have been calculated in CHPT
in both leading order (LO) and next-to-leading order (NLO) [22,23,
1,24-28]. Earlier discussions in the large N, limit can be found in
Refs. [29,30]. The NLO calculations for x; in Refs. [25,28] and for c4
in Ref. [28] were performed for an arbitrary number of flavors with
different masses, and based on the generating functionals of CHPT
[21] expanded around 6 = 0 up to 2-point loops (up to 1-point
tadpole loops for the topological susceptibility [25]).

In this paper, we will derive a general formula for the vacuum
energy density in SU(2) chiral perturbation theory keeping differ-
ent masses for the up and down quarks. The derivation involves a
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direct calculation of the logarithm of the determinant for the free
Goldstone bosons in a 8-vacuum, and thus does not require an ex-
pansion up to a finite n-point loops. In this sense, it contains a
summation of all one-loop diagrams at NLO in the chiral expan-
sion, i.e. O (p4) with p denoting a small momentum or Goldstone
boson mass, contributing to the vacuum energy. The expression for
the vacuum energy density can then be used to calculate any cu-
mulant of the distribution of the QCD topological charge defined
in Eq. (4).

It was emphasized in Ref. [28] that lattice simulations of these
topological quantities with degenerate quarks are very interesting
to pin down the N-flavor quark condensate. Although both the
topological susceptibility and the fourth cumulant depend on sev-
eral low-energy constants (LECs) in the NLO chiral Lagrangian, in
addition to the quark condensate, the authors found an interest-
ing linear combination, x; + N2c4/4 with N the number of flavors,
independent of any LEC. Thus, such a combination is particularly
suitable for extracting the N-flavor averaged quark condensate
whose absolute value is

¥y =F%By, (6)

where Fy, the pion decay constant, and By are defined in the chi-
ral limit. For determinations of the quark condensate from lattice
calculations of the topological susceptibility, we refer to Ref. [26,16,
17]. Stimulated by this insight, we will also derive general expres-
sions for the SU(N) vacuum energy density and cumulants with
degenerate quarks. It turns out that all the cumulants depend on
the same linear combination of the NLO LECs and chiral logarithm.
As a result, one can construct linear combinations of the cumu-
lants free of NLO corrections.

At this point, we notice that higher cumulants can be obtained
from lower ones and moments using the following recursion rela-
tion

con = (=1)"*!
<Q2n> “ m 2n—1 2(n—m)
><|: v +n§1(—1) <2m_1><Q >sz 970- (7)

2. Vacuum energy in SU(2) chiral perturbation theory

2.1. Leading order

Because the 6-angle can be rotated to the phase of the quark
mass matrix by an axial U(1) rotation, the #-dependence of physi-
cal quantities can be studied by using a complex quark mass ma-
trix. At LO, O (pz). of SU(N) chiral perturbation theory, the vacuum
energy density in a 6-vacuum for N quarks is given by

FZ
elae(©) == {xo U§ + xJ Uo) (8)

where yy = 2By M exp(i6/N) with M being the real and diag-
onal quark mass matrix, and the vacuum alignment Uy can be
parametrized as a diagonal matrix Ug = diag{e'¥1, ez, ... ei¥N}
with the constraint )_; ¢; = 0. The angles ¢; are determined by
minimizing the vacuum energy. It is equivalent to removing the
tree-level tadpole terms of the neutral Goldstone bosons which
would induce vacuum instability [31-33].

In this section, we will study the case with N = 2. We will drop
the subscripts in F, and B, to be consistent with the traditional
notation in CHPT. With Ug = diag{e!?, e~i¢}, we have

0 0
e‘(,?c(e) =2F*Bm (cos 5 Cos@ — € sin 5 sin (p> , 9)

where m = (my + my)/2 is the average mass of the up and down
quarks and € = (mg —my)/(my +my) quantifies the strong isospin
breaking. Minimizing the vacuum energy with respect to ¢, one
gets [1]

0
tan(p:—etanz. (10)

Substituting this into Eq. (9), we get the vacuum energy density at
LO, up to an additive normalization constant [1]

el (0) = —F2M2(6), (11)

where M2 () is the LO pion mass squared in a §-vacuum [1]

. 6] 0
M2(9):23mcos§ 1+€2tan25. (12)

Notice that in the absence of the electromagnetic interaction, the
neutral and charged pions have the same mass at LO. The cu-
mulants of the distribution of the topological charge can then be
easily obtained. For instance, the topological susceptibility and the
fourth cumulant at LO are

X2 = %FZBn‘q (1-€2).

cf):—éFZBrﬁ (1+262—3E4), (13)
which have been derived before in Refs. [22,25,24].

2.2. Next-to-leading order

At NLO, there are contributions from both the tree-level terms
in the O(p4) chiral Lagrangian and one-loop diagrams. The vac-
uum energy density up to NLO is given by

I
evac(0) = efar(0) + evac ™ (0) + eia ™ 0) , (14)

where e{2.(9) is given in Eq. (9), e\:1°°P) (9) is the one-loop contri-

bution to be calculated later on, and the NLO tree-level contribu-
tion is

l 2] 2
(4.tree) 3 [t f 7t t
e (9)=_E<X9 Uo+ Xeo U()) +E<X0 Uo — Xeo UO)
h1+h3 + h1 —h3
B (Xe m)— 5 Re (det x4)
2
. (1 —€?)tan(9/2)
=M@ {lz+1; | ——— =
( )[3+ 7[1+62tan2(9/2)

— 282 [ (1 +hy) (1+ €2)
+ (hy — h3) (1 —ez)cose], (15)

where I3, I; and hq, hs are the LECs and high-energy constants
(HECs), respectively, in the NLO two-flavor chiral Lagrangian [20],!
and we have used Eq. (10).2 Because both I3 and h; are ultraviolet

T Here we use the SU(2) x SU(2) notation rather than the O(4) one in the original
paper, see, e.g., [34].

2 In principle, the vacuum alignment determined by minimizing the LO vac-
uum energy gets shifted due to the presence of the higher order terms, [; in
this case. However, this shift only provides a perturbation and is of one order
higher compared to the angle ¢ in Eq. (10). It introduces CP-odd vertices (see, e.g.,
Refs. [35-37]) and does not affect CP-even quantities up to O (p4), thus irrelevant
for us. It is for this reason that the topological susceptibility up to NLO in the chiral
expansion calculated in Ref. [28] agrees with that in Ref. [25], where the vacuum
alignment was calculated by minimizing the LO and NLO vacuum energy, respec-
tively.
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(UV) divergent [20],

=1 — hy=h, + 22, (16)

5 5
with A the divergence at the space-time dimension d =4 in di-
mensional regularization,

_ i
1672

11 /
m_5[11](4yr)+r(1)+1]}, (17)

where g is the scale in dimensional regularization, e{s:™® (©0) is
UV divergent as well, and the divergence is (the divergence is non-
trivial in a #-vacuum noticing the 6-dependence)

(4 tree, oo)(e)

vac

4
—71\/1 ©). (18)

As will be shown this divergence is exactly canceled by the one
from loops in e{%:100P) @).
p vac

Before proceeding to calculating the loop contribution to the
vacuum energy density, let us discuss the main difference between
our treatment (see below) and the one in Refs. [25,28]. In those pa-
pers the authors took the expression of the generational functional
in Ref. [21]. It is normalized to the free fields at & =0 (notice that
Refs. [20,21] assume 6 = 0). Then the loops were calculated us-
ing the Goldstone boson masses at 6 =0, and the 6-dependence is
kept in the operator o X defined as (we have replaced U contain-
ing quantum fluctuations of Goldstone bosons by Ug relevant for
the vacuum energy)

ofy = ; ({45} (xd U0+ x0 UF)) = S0 M3 @), (19)

where Lp are linear combinations of the SU(N) generators intro-
duced to diagonalize the LO mass term [21], and Mp(0) are the LO
Goldstone boson masses at & = 0. This amounts to an expansion
around 6 = 0, which is perfectly fine for the calculation of the cu-
mulants of the topological charge. However, we notice that the first
term in the above equation is in fact §pg 1\71,2,(6'). If we expand the
one-loop generating functional around the one for the free fields
in a f-vacuum,
i i

Zo(0) = 2 Indet Dg(0) = 2 TrinDo(0), (20)
where Tr stands for taking trace in both the flavor (this is the space

of the adjoint representation which is 3-dimensional for the SU(2)
case) and coordinate spaces, and Dg(0) is a differential operator,

Dopq (®) =bpq [9,0" + M3 ©)], (21)

then Mlz3 (0) in Eq. (19) needs to be replaced by M,Z, (0) and olﬁ(Q
vanishes. As a result, the only term left in the one-loop generat-
ing functional relevant for the vacuum energy is Zo(#). Thus, the
vacuum energy density is given by

(4,loop) (9) __

eyac v Trin Dy(0) . (22)

For the case of SU(2), because the neutral and charged pi-
ons have the same mass at LO, M2(0) is given by Eq. (12), and
Do(8) = 1343 [3, " + M?(0)], where the unit matrix has the di-
mension of the adjoint representation for SU(2). Extending these
considerations to the case of N degenerate quark flavors and using
dimensional regularization, we obtain

(4loop) 2
0)= (N - )/(2 5 In[-p? + )]
)/ / —r[—p2+M2(6)]
@)l
12
&_;[l_zmm <9>”.
2 12872 w2

(23)

= (N? —1)1\'714(9){

For N =2, one sees that the UV divergence cancels exactly the one
in Eq. (18). The sum of Egs. (9), (15) and (23) provides the vacuum
energy density in a 6-vacuum up to NLO,

12
evac(®) = —FM*(©) — M*(©) : 12;2 [l o Mu(ze)}

+l§+h§—h3+l7[ (24)

(1— ez)tan(9/2):|2
14+ €2tan?(4/2) ’

where we have dropped 0-independent constant terms. The renor-
malized LEC I and HEC h) are scale dependent [20] and this
scale dependence cancels that in the chiral logarithm resulting in
a scale-independent vacuum energy density in a 6-vacuum. This is
the main result of our paper. It is then trivial to obtain the expres-
sion for any cumulant, and the lowest two are

1., . , 2B [ 3 . 2Bin
xe=~F Bm(l—e) 1- In
2 F2 \32722 " 2

2[5 +H —h3—17(1—62)]>}+0(p6),

1 _
Cq4= —ngBm (1 +2¢2 —364)

+8% (1) { 12:712 (1-¢) 323712 In ZE—T

—z[zg+hq—h3—z7(1+262—3e4)]}+0(p6). (25)

They agree with the general N-flavor expressions in Ref. [28] for
N = 2. Furthermore, in the isospin symmetric case, they depend
on the same combination of the LECs and HECs, I5 —I7 4 h!| — hs.

3. SU(N) with degenerate quark masses

The evaluation of the functional determinant Zp(0) or
el41%%P) 9y in Eq. (23) only requires the Goldstone bosons to be
degenerate. Therefore, it is easy to generalize the result in the pre-
vious section to the case of SU(N) with degenerate quark masses.’
The one-loop contribution to the vacuum energy density in a
§-vacuum is given by Eq. (23) as well with M(0) replaced by the
LO Goldstone boson mass for SU(N), see below.

When all the quarks are degenerate with a mass m, the vac-
uum is given by Ug = Iyxn. With the O (p*) Gasser-Leutwyler
Lagrangian for SU(N) [21], we get the tree-level contribution, in-
cluding both LO and NLO, to the vacuum energy density in a
f-vacuum

3 For SU(N) with different quark masses, one may expand around 6 = 0,
InDo(8) =InDg(0) + Dy ' (0) A(6) + Dy ' (0) A(B) Dy ' (0) A(B) +... with Apg (8) =
Spq [1\71%,(0) — MIZ, (0)]. This gives the general formulation used in Ref. [28].
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vac

0 0
etree — _NFIZ\]BNmCOS N _ 4NBIZVm2 <4NL6 COS2 N

0 260
— 4NL;sin? N +2Lg cos +4H2>, (26)

where Lg7g are LECs and Hy is a HEC. Among them, Lg, L7 and
H; contain a UV divergent piece which can be calculated using the
heat kernel method with path integral [21,38]

L5:Lr+wk L8:U+Ek
67 16N2 87 16N 7
HZ:H£+N2_4A. (27)
SN

It is straightforward to check that these divergences cancel the one
(4100P) i Eq. (23). The vacuum energy density in a #-vacuum

in ey,c

up to NLO is then
N2 -1 MZ26
——|1-2In n®)
12872 2

evac(0) = —%F%,MW) — My(©) [

0
+ 4N (NLg +L§ — NL7 tan? N) } (28)

with the scale-dependent finite LECs L} and L§, where M (0) =
2Bymcos(6/N), and the cumulants are

NZ -1 2Bym
F2Bym + 4"B%m?> 1-2In
{ N Nl 6ameN 2

+ 8(NLg+L§+NL7)]}

(_1)n+1
Con = N2n—1

N2 -1
1672

+ Bm?&N on (29)

with the number &y 2, defined as

& = ¢ cos? 0 In | cos o
N2 qgan N N

One sees that all cumulants depend on the same linear combina-
tion of the LECs, as observed in Ref. [28] for the topological suscep-
tibility and the fourth cumulant, and chiral logarithms. From this it
is easy to construct LEC-free combination of cumulants which can
be used for a clean extraction of the N-flavor quark condensate
from lattice simulations as suggested in Ref. [28]. Examples are

(30)

0=0

N?>  3F%Bym 3 (N*—1)B3m?

2 oca= o (b
Xt ="y 3272N2 T (p )
N* 15F2Bym  15(N? — 1) B{m? 5
N o . (31
Xt = 766 16N 6an2nz T (p) (31)

where the first expression was already proposed in Ref. [28].* More
interestingly, the NLO corrections can be canceled out completely
in certain linear combinations, and lead to sum rules between
the QCD topological sector and the spontaneous breaking of chi-
ral symmetry, such as

s V(8 2V M +O(6) (32)
N—m 5Xr 3 4 156 D).

4 The physical pion mass was used in the unitary logarithms in Ref. [28]. If one
uses the LO pion mass, one obtains agreement with the first expression here. The
difference obtained using the physical pion mass is of higher order.

In fact, in the chiral limit, we have the following exact relation as
can be seen from Eq. (29)

. 162
Ty =7 p(0) = lim (—1)" "IN 1;” : (33)

where we have displayed the Banks—Casher relation [39] linking
the quark condensate to the zero-mode spectral density of the Eu-
clidean Dirac operator, denoted by p(0), as well. These relations
can be simply obtained using the LO expression for the vacuum
energy density, and suggest that there is an intimate link between
the QCD topological sector and the spontaneous breaking of chiral
symmetry.

4. Summary

We have derived the expressions for the vacuum energy den-
sity in a #-vacuum in SU(2) CHPT up to NLO keeping different up
and down quark masses as well as in SU(N) CHPT with degenerate
quark masses. They can be used to calculate the cumulants of the
QCD topological charge distribution which are important quanti-
ties to study QCD in the low-energy strong coupling regime. In
the case of degenerate quark masses, all cumulants depend on the
same linear combination of low-energy constants, as already ob-
served for the topological susceptibility and the fourth cumulant
in Ref. [28]. Therefore, one can construct many combinations of
the cumulants depending only on the quark mass and condensate.
They can be used to extract the quark condensate in lattice sim-
ulations without contamination from LECs. Furthermore, we find
sum rules relating the quark condensate to the cumulants free of
NLO corrections. It would be interesting to check such relations in
lattice QCD.
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