466 research outputs found
The Response of Big Sagebrush (\u3ci\u3eArtemisia tridentata\u3c/i\u3e) to Interannual Climate Variation Changes Across Its Range
Understanding how annual climate variation affects population growth rates across a species\u27 range may help us anticipate the effects of climate change on species distribution and abundance. We predict that populations in warmer or wetter parts of a species\u27 range should respond negatively to periods of above average temperature or precipitation, respectively, whereas populations in colder or drier areas should respond positively to periods of above average temperature or precipitation. To test this, we estimated the population sensitivity of a common shrub species, big sagebrush (Artemisia tridentata), to annual climate variation across its range. Our analysis includes 8,175 observations of year‐to‐year change in sagebrush cover or production from 131 monitoring sites in western North America. We coupled these observations with seasonal weather data for each site and analyzed the effects of spring through fall temperatures and fall through spring accumulated precipitation on annual changes in sagebrush abundance. Sensitivity to annual temperature variation supported our hypothesis: years with above average temperatures were beneficial to sagebrush in colder locations and detrimental to sagebrush in hotter locations. In contrast, sensitivity to precipitation did not change significantly across the distribution of sagebrush. This pattern of responses suggests that regional abundance of this species may be more limited by temperature than by precipitation. We also found important differences in how the ecologically distinct subspecies of sagebrush responded to the effects of precipitation and temperature. Our model predicts that a short‐term temperature increase could produce an increase in sagebrush cover at the cold edge of its range and a decrease in cover at the warm edge of its range. This prediction is qualitatively consistent with predictions from species distribution models for sagebrush based on spatial occurrence data, but it provides new mechanistic insight and helps estimate how much and how fast sagebrush cover may change within its range
Potential implantable nanofibrous biomaterials combined with stem cells for subchondral bone regeneration
The treatment of osteochondral defects remains a challenge. Four scaffolds were produced using Food and Drug Administration (FDA)-approved polymers to investigate their therapeutic potential for the regeneration of the osteochondral unit. Polycaprolactone (PCL) and poly(vinyl-pyrrolidone) (PVP) scaffolds were made by electrohydrodynamic techniques. Hydroxyapatite (HAp) and/or sodium hyaluronate (HA) can be then loaded to PCL nanofibers and/or PVP particles. The purpose of adding hydroxyapatite and sodium hyaluronate into PCL/PVP scaffolds is to increase the regenerative ability for subchondral bone and joint cartilage, respectively. Humanbone marrow-derived mesenchymal stem cells (hBM-MSCs) were seeded on these biomaterials. The biocompatibility of these biomaterials in vitro and in vivo, as well as their potential to support MSC differentiation under specific chondrogenic or osteogenic conditions, were evaluated. We show here that hBM-MSCs could proliferate and differentiate both in vitro and in vivo on these biomaterials. In addition, the PCL-HAp could effectively increase the mineralization and induce the differentiation of MSCs into osteoblasts in an osteogenic condition. These results indicate that PCL-HAp biomaterials combined with MSCs could be a beneficial candidate for subchondral bone regeneration
Nonlinear Magneto-Optics of Fe Monolayers from first principles: Structural dependence and spin-orbit coupling strength
We calculate the nonlinear magneto-optical response of free-standing fcc
(001), (110) and (111) oriented Fe monolayers. The bandstructures are
determined from first principles using a full-potential LAPW method with the
additional implementation of spin-orbit coupling. The variation of the
spin-orbit coupling strength and the nonlinear magneto-optical spectra upon
layer orientation are investigated. We find characteristic differences which
indicate an enhanced sensitivity of nonlinear magneto-optics to surface
orientation and variation of the in-plane lattice constants. In particular the
crossover from onedimensional stripe structures to twodimensional films of
(111) layers exhibits a clean signature in the nonlinear Kerr-spectra and
demonstrates the versatility of nonlinear magneto-optics as a tool for in situ
thin-film analysis.Comment: 28 pages, RevTeX, psfig, submitted to PR
Mechanistic illustration: How newly‐formed blood vessels stopped by the mineral blocks of bone substitutes can be avoided by using innovative combined therapeutics
One major limitation for the vascularization of bone substitutes used for filling is the presence of mineral blocks. The newly-formed blood vessels are stopped or have to circumvent the mineral blocks, resulting in inefficient delivery of oxygen and nutrients to the implant. This leads to necrosis within the implant and to poor engraftment of the bone substitute. The aim of the present study is to provide a bone substitute currently used in the clinic with suitably guided vascularization properties. This therapeutic hybrid bone filling, containing a mineral and a polymeric component, is fortified with pro-angiogenic smart nano-therapeutics that allow the release of angiogenic molecules. Our data showed that the improved vasculature within the implant promoted new bone formation and that the newly-formed bone swapped the mineral blocks of the bone substitutes much more efficiently than in non-functionalized bone substitutes. Therefore, we demonstrated that our therapeutic bone substitute is an advanced therapeutical medicinal product, with great potential to recuperate and guide vascularization that is stopped by mineral blocks, and can improve the regeneration of critical-sized bone defects. We have also elucidated the mechanism to understand how the newly-formed vessels can no longer encounter mineral blocks and pursue their course of vasculature, giving our advanced therapeutical bone filling great potential to be used in many applications, by combining filling and nano-regenerative medicine that currently fall short because of problems related to the lack of oxygen and nutrients
US Fish and Wildlife Service 1979 wetland classification: A review
In 1979 the US Fish and Wildlife Service published and adopted a classification of wetlands and deepwater habitats of the United States. The system was designed for use in a national inventory of wetlands. It was intended to be ecologically based, to furnish the mapping units needed for the inventory, and to provide national consistency in terminology and definition. We review the performance of the classification after 13 years of use. The definition of wetland is based on national lists of hydric soils and plants that occur in wetlands. Our experience suggests that wetland classifications must facilitate mapping and inventory because these data gathering functions are essential to management and preservation of the wetland resource, but the definitions and taxa must have ecological basis. The most serious problem faced in construction of the classification was lack of data for many of the diverse wetland types. Review of the performance of the classification suggests that, for the most part, it was successful in accomplishing its objectives, but that problem areas should be corrected and modification could strengthen its utility. The classification, at least in concept, could be applied outside the United States. Experience gained in use of the classification can furnish guidance as to pitfalls to be avoided in the wetland classification process
A next generation measurement of the electric dipole moment of the neutron at the FRM II
In this paper we discuss theoretical motivations and the status of experimental searches to find time-reversal symmetry-violating electric dipole moments (EDM). Emphasis is given to a next generation search for the EDM of the
neutron, which is currently being set up at the FRM II neutron source in Garching, with an ultimate sensitivity goal of 5 × 10−28 cm (3σ). The layout of the apparatus
allows for the detailed investigation of systematic effects by combining various means of magnetic field control and polarized UCN optics. All major components of the
installations are portable and can be installed at the strongest available UCN beam
The physiological importance of photosynthetic ferredoxin NADP+ oxidoreductase (FNR) isoforms in wheat
Ferredoxin NADP+ oxidoreductase (FNR) enzymes catalyse electron transfer between ferredoxin and NADPH. In plants, a photosynthetic FNR (pFNR) transfers electrons from reduced ferredoxin to NADPH for the final step of linear electron flow, providing reductant for carbon fixation. pFNR is also thought to play important roles in two different mechanisms of cyclic electron flow around photosystem I; and photosynthetic reductant is itself partitioned between competing linear, cyclic, and alternative electron flow pathways. Four pFNR protein isoforms in wheat that display distinct reaction kinetics with leaf-type ferredoxin have previously been identified. It has been suggested that these isoforms may be crucial to the regulation of reductant partition between carbon fixation and other metabolic pathways. Here the 12 cm primary wheat leaf has been used to show that the alternative N-terminal pFNRI and pFNRII protein isoforms have statistically significant differences in response to the physiological parameters of chloroplast maturity, nitrogen regime, and oxidative stress. More specifically, the results obtained suggest that the alternative N-terminal forms of pFNRI have distinct roles in the partitioning of photosynthetic reductant. The role of alternative N-terminal processing of pFNRI is also discussed in terms of its importance for thylakoid targeting. The results suggest that the four pFNR protein isoforms are each present in the chloroplast in phosphorylated and non-phosphorylated states. pFNR isoforms vary in putative phosphorylation responses to physiological parameters, but the physiological significance requires further investigation
- …