353 research outputs found
Nuclear three-body problem in the complex energy plane: Complex-Scaling-Slater method
The physics of open quantum systems is an interdisciplinary area of research.
The nuclear "openness" manifests itself through the presence of the many-body
continuum representing various decay, scattering, and reaction channels. As the
radioactive nuclear beam experimentation extends the known nuclear landscape
towards the particle drip lines, the coupling to the continuum space becomes
exceedingly more important. Of particular interest are weakly bound and unbound
nuclear states appearing around particle thresholds. Theories of such nuclei
must take into account their open quantum nature. To describe open quantum
systems, we introduce a Complex Scaling (CS) approach in the Slater basis. We
benchmark it with the complex-energy Gamow Shell Model (GSM) by studying
energies and wave functions of the bound and unbound states of the two-neutron
halo nucleus 6He viewed as an + n + n cluster system. In the CS
approach, we use the Slater basis, which exhibits the correct asymptotic
behavior at large distances. To extract particle densities from the
back-rotated CS solutions, we apply the Tikhonov regularization procedure,
which minimizes the ultraviolet numerical noise. While standard applications of
the inverse complex transformation to the complex-rotated solution provide
unstable results, the stabilization method fully reproduces the GSM benchmark.
We also propose a method to determine the smoothing parameter of the Tikhonov
regularization. The combined suite of CS-Slater and GSM techniques has many
attractive features when applied to nuclear problems involving weakly-bound and
unbound states. While both methods can describe energies, total widths, and
wave functions of nuclear states, the CS-Slater method, if it can be applied,
can provide an additional information about partial energy widths associated
with individual thresholds.Comment: 15 pages, 16 figure
The Friedrichs-Model with fermion-boson couplings II
In this work we present a formal solution of the extended version of the
Friedrichs Model. The Hamiltonian consists of discrete and continuum bosonic
states, which are coupled to fermions. The simultaneous treatment of the
couplings of the fermions with the discrete and continuous sectors of the
bosonic degrees of freedom leads to a system of coupled equations, whose
solutions are found by applying standard methods of representation of bound and
resonant states.Comment: 13 page
Particle-unstable nuclei in the Hartree-Fock theory
Ground state energies and decay widths of particle unstable nuclei are
calculated within the Hartree-Fock approximation by performing a complex
scaling of the many-body Hamiltonian. Through this transformation, the wave
functions of the resonant states become square integrable. The method is
implemented with Skyrme effective interactions. Several Skyrme parametrizations
are tested on four unstable nuclei: 10He, 12O, 26O and 28O.Comment: 5 pages, LaTeX, submitted to Phys. Rev. Let
Needs to Achieve Improved Fire Protection as regards the Implementation and Development of the EN Eurocodes
The work reported is a deliverable within the framework of the Administrative Arrangement between DG ENTR and JRC on support to the implementation, harmonization and further development of the Eurocodes. The report encompasses the results achieved during the three-year work on Sub-task 5.2 'Needs for fire protection' of the Administrative Arrangement with DG ENTR.
The report consists of three self-contained sections, namely:
- Research needs to achieve improved fire design using the Eurocodes,
- Implementation and use of fire-parts of the Eurocodes, and
- Survey on the progress in the National implementation of the Eurocodes fire design parts.
The present report has been prepared by the JRC in collaboration with the two ad-hoc groups on fire design convened by the JRC and in consultation with DG ENTR, Member States and individual experts and organizations involved in fire design.JRC.G.5-European laboratory for structural assessmen
Shell Corrections for Finite-Depth Deformed Potentials: Green's Function Oscillator Expansion Method
Shell corrections of the finite deformed Woods-Saxon potential are calculated
using the Green's function method and the generalized Strutinsky smoothing
procedure. They are compared with the results of the standard prescription
which are affected by the spurious contribution from the unphysical particle
gas. In the new method, the shell correction approaches the exact limit
provided that the dimension of the single-particle (harmonic oscillator) basis
is sufficiently large. For spherical potentials, the present method is faster
than the exact one in which the contribution from the particle continuum states
is explicitly calculated. For deformed potentials, the Green's function method
offers a practical and reliable way of calculating shell corrections for weakly
bound nuclei.Comment: submitted to Phys. Rev. C, 12 pages, 7 figure
Decay Rate of Triaxially-Deformed Proton Emitters
The decay rate of a triaxially-deformed proton emitter is calculated in a
particle-rotor model, which is based on a deformed Woods-Saxon potential and
includes a deformed spin-orbit interaction. The wave function of the
ground state of the deformed proton emitter Ho is obtained
in the adiabatic limit, and a Green's function technique is used to calculate
the decay rate and branching ratio to the first excited 2 state of the
daughter nucleus. Only for values of the triaxial angle
is good agreement obtained for both the total decay rate and the 2
branching ratio.Comment: 19 pages, 4 figure
Modified two-potential approach to tunneling problems
One-body quantum tunneling to continuum is treated via the two-potential
approach, dividing the tunneling potential into external and internal parts. We
show that corrections to this approach can be minimized by taking the
separation radius inside the interval determined by simple expressions. The
resulting two-potential approach reproduces the resonance energy and its width,
both for narrow and wide resonances. We also demonstrate that, without losing
its accuracy, the two-potential approach can be modified to a form resembling
the R-matrix theory, yet without any uncertainties of the latter related to the
choice of the matching radius.Comment: 7 two-column pages, 3 figures, extra-explanation added, Phys. Rev. A,
in pres
Plasma amyloid concentration in Alzheimer's disease: performance of a high-throughput amyloid assay in distinguishing Alzheimer's disease cases from controls
BACKGROUND: Collection of cerebrospinal fluid (CSF) for measurement of amyloid-β (Aβ) species is a gold standard in Alzheimer's disease (AD) diagnosis, but has risks. Thus, establishing a low-risk blood Aβ test with high AD sensitivity and specificity is of outmost interest. OBJECTIVE: We evaluated the ability of a commercially available plasma Aβ assay to distinguish AD patients from biomarker-healthy controls. METHOD: In a case-control design, we examined plasma samples from 44 AD patients (A + N+) and 49 controls (A-N-) from a memory clinic. AD was diagnosed using a combination of neuropsychological examination, CSF biomarker analysis and brain imaging. Total Aβ40 and total Aβ42 in plasma were measured through enzyme-linked immunosorbent assay (ELISA) technology using ABtest40 and ABtest42 test kits (Araclon Biotech Ltd.). Receiver operating characteristic (ROC) analyses with outcome AD were performed, and sensitivity and specificity were calculated. RESULTS: Plasma Aβ42/40 was weakly positively correlated with CSF Aβ42/40 (Spearman's rho 0.22; p = 0.037). Plasma Aβ42/40 alone was not able to statistically significantly distinguish between AD patients and controls (AUC 0.58; 95% CI 0.46, 0.70). At a cut-point of 0.076 maximizing sensitivity and specificity, plasma Aβ42/40 had a sensitivity of 61.2% and a specificity of 63.6%. CONCLUSION: In this sample, the high-throughput blood Aβ assay was not able to distinguish well between AD patients and controls. Whether or not the assay may be useful in large-scale epidemiological settings remains to be seen
Localization of shadow poles by complex scaling
Through numerical examples we show that the complex scaling method is suited
to explore the pole structure in multichannel scattering problems. All poles
lying on the multisheeted Riemann energy surface, including shadow poles, can
be revealed and the Riemann sheets on which they reside can be identified.Comment: 6 pages, Latex with Revtex, 3 figures (not included) available on
reques
- …