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Nuclear three-body problem in the complex energy plane: Complex-scaling Slater method
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Background: The physics of open quantum systems is an interdisciplinary area of research. The nuclear
“openness” manifests itself through the presence of the many-body continuum representing various decay,
scattering, and reaction channels. As the radioactive nuclear beam experimentation extends the known nuclear
landscape toward the particle drip lines, the coupling to the continuum space becomes exceedingly more important.
Of particular interest are weakly bound and unbound nuclear states appearing around particle thresholds. Theories
of such nuclei must take into account their open quantum nature.
Purpose: To describe open quantum systems, we introduce a complex-scaling (CS) approach in the Slater basis.
We benchmark it with the complex-energy Gamow shell model (GSM) by studying energies and wave functions
of the bound and unbound states of the two-neutron halo nucleus 6He viewed as an α + n + n cluster system.
Methods: Both CS and GSM approaches are applied to a translationally invariant Hamiltonian with the two-body
interaction approximated by the finite-range central Minnesota force. In the CS approach, we use the Slater
basis, which exhibits the correct asymptotic behavior at large distances. To extract particle densities from the
back-rotated CS solutions, we apply the Tikhonov regularization procedure, which minimizes the ultraviolet
numerical noise.
Results: We show that the CS-Slater method is both accurate and efficient. Its equivalence to the GSM approach
has been demonstrated numerically for both energies and wave functions of 6He. One important technical aspect of
our calculation was to fully retrieve the correct asymptotic behavior of a resonance state from the complex-scaled
(square-integrable) wave function. While standard applications of the inverse complex transformation to the
complex-rotated solution provide unstable results, the stabilization method fully reproduces the GSM benchmark.
We also propose a method to determine the smoothing parameter of the Tikhonov regularization.
Conclusions: The combined suite of CS-Slater and GSM techniques has many attractive features when applied
to nuclear problems involving weakly bound and unbound states. While both methods can describe energies, total
widths, and wave functions of nuclear states, the CS-Slater method—if it can be applied—can provide additional
information about partial energy widths associated with individual thresholds.
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I. INTRODUCTION

The physics of open quantum systems spans many areas
of research, ranging from optical physics to nanoscience,
to atomic and nuclear physics. Of particular interest are
long-lived metastable states and broad resonances: they carry
rich information about localized nucleonic states confined to
the nuclear interior, about the multichannel environment of
scattering and decaying states, and about the coupling between
these two spaces. With exciting advances in radioactive beam
experimentation worldwide, many weakly bound isotopes
inhabiting the outskirts of the nuclear landscape can now be
reached; they provide a fertile territory for studying generic
properties of open quantum systems [1].

To develop a microscopic theoretical framework that would
unify structural and reaction-theoretical aspects of the nuclear
many-body system remains a challenge. A step in this direction
is the unification of bound states and resonant phenomena,
often enabled by high-performance computing, and there has
been excellent progress in this area [2–9].

One possible strategy in this area is to relate the resonance
parameters directly to the complex-energy eigenvalues of
the effective Hamiltonian. To this end, one can solve the
many-body eigenproblem with the Hermitian Hamiltonian
by imposing specific boundary conditions [10], or one can
construct a manifestly non-Hermitian effective Hamiltonian
[11–13]. In both cases, the eigenstates that appear below the
particle threshold are bound, and the complex-energy states
above the threshold represent the many-body continuum.

The Gamow shell model (GSM) [10] and complex-scaling
(CS) [14–16] methods deal with effective non-Hermitian
Hamiltonians. In the GSM, one starts with a Hermitian
Hamiltonian and by imposing outgoing boundary conditions
one ends up with a complex-symmetric Hamiltonian matrix.
In the CS method, a non-Hermitian Hamiltonian appears as a
result of a complex rotation of coordinates. The corresponding
nonunitary transformation is characterized by a real parameter
ϑ . The transformed eigenstates are square integrable; this
is a very attractive feature from a computational point of
view. Unfortunately, since the eigenvectors depend on ϑ , they
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cannot be directly compared with the eigenfunctions of the
original Hamiltonian. To obtain the wave functions from the
CS solutions, the so-called back-rotation must be employed.
Since in most cases the eigenproblem is solved numerically,
the back-rotation constitutes an ill-posed inverse problem and
high-frequency ultraviolet noise appears [17,18]. We are aware
of at least two attempts [19,20] to overcome this problem.
When the original wave function is reconstructed by means
of the Padé approximation [19], several calculations with
different ϑ values can be carried out to perform the analytical
continuation. In Ref. [20], special properties of the applied
basis set were utilized to cure the errors of the back-rotated
wave function. (Reproducing the correct behavior of the
wave function is of particular importance in the context of
particle densities, which carry information about many-body
correlations and also about fundamental properties of unbound
states.) In this work, we will present a new approach to the
problem of back-rotation. Our procedure does not depend on
the type of basis set used, and it is based on sound mathematical
foundations.

The CS method has been successfully applied in quantum
chemistry to solve many-body problems with an extremely
high accuracy [14,15,21–23] and also in nuclear physics and
in calculations of resonance parameters [24,25] and cluster
systems [16,26–28]. In the nuclear three-body calculations,
mainly Jacobi coordinates have been employed. In the cluster
orbital shell model [16], besides the “V”-type coordinate,
also a “T”-type Jacobi coordinate has been used in order to
incorporate correlations. In the field of quantum chemistry,
on the other hand, mainly Hylleraas-type functions [29,30]
are used, and the achieved accuracy for the helium atom is
spectacular [31–33].

In our CS calculations, we employ the Slater basis set
[34]. The Slater wave functions have a correct asymptotic
behavior, making them a perfect choice for the description
of weakly bound systems. A basis set of similar type, the
Coulomb-Sturmian functions, has been recently introduced
into the no-core shell model framework [35] and has been
employed in reaction calculations [36]. Those functions are
in fact linear superpositions of Slater orbits.

In this work, the precision of the new CS-Slater method
is tested against the results of the GSM calculations. For the
sake of benchmarking, we consider the energies and wave
functions of the 0+

1 and 2+
1 states of 6He. The paper is organized

as follows. Section II describes the Hamiltonian used, many-
body methods, and configuration spaces employed. In Sec. III
we discuss the difficulties related to the back-rotation of the
CS wave function and introduce the necessary regularization
scheme. Section IV presents the results for 6He and the details
of the CS-GSM benchmarking. Finally, conclusions and future
plans are contained in Sec. V.

II. MODELS AND METHODS

A. Three-body Hamiltonian

For the description of the ground and excited state of
6He we assume a cluster (α + n + n) picture of the nucleus.
Consequently, we consider a system of three particles with
masses mi and single-particle coordinates r i , where i = 1,2

for neutrons and i = 3 for the α core. We introduce the
relative coordinates r ij = r i − rj and rij = |r ij |. The system
Hamiltonian in the center-of-mass frame reads

H = − �
2

2μ1
�r13 − �

2

2μ2
�r23 − �

2

m3
∇r13∇r23

+V12(r12) + V13(r13) + V23(r23), (1)

where the reduced masses are

μ1 = m1m3

m1 + m3
, μ2 = m2m3

m2 + m3
. (2)

It is worth noting that the Hamiltonian (1) represents the
intrinsic properties of the system; i.e., it is free from the
spurious center-of-mass motion. After introduction of the
single-neutron Hamiltonian,

Hi3(r) = − �
2

2μi

�r + Vi3(r) (i = 1,2), (3)

the Hamiltonian (1) can be written as

H = H13(r13) + H23(r23) + V12(r12) − �
2

m3
∇r13∇r23 , (4)

where the last term represents a two-body recoil term, which
originates from the transformation to the relative coordinate
frame.

B. Complex-scaling method

The key element of the CS method is the complex-
scaling operator U (ϑ), which transforms an arbitrary function
χ (r13,r23) according to

U (ϑ)χ (r13,r23) = ei3ϑχ (eiϑ r13,e
iϑ r23). (5)

The transformed Shrödinger equation becomes

Hϑ�ϑ = E�ϑ, (6)

where

Hϑ = U (ϑ)HU (ϑ)−1 (7)

is a complex-scaled Hamiltonian

Hϑ = e−2iϑ

(
− �

2

2μ1
�r13 − �

2

2μ2
�r23 − �

2

m3
∇r13∇r23

)
+V12(eiϑ r12) + V13(eiϑ r13) + V23(eiϑ r23). (8)

The eigenfunctions �(r13,r23) and �ϑ (r13,r23) of the Hamil-
tonians (1) and (8) satisfy the following relation:

�ϑ (r13,r23) = ei3ϑ�(eiϑ r13,e
iϑ r23) (9)

or the so-called back-rotation relation

�(r13,r23) = e−i3ϑ�ϑ (e−iϑ r13,e
−iϑ r23). (10)

According to the Aguilar-Balslev-Combes theorem [37,38],
the resonant solutions of Eq. (6) are square integrable. This
feature makes it possible to use bound-state methods to solve
(6), including configuration interaction [14,15], Faddeev and
Faddeev-Yakubovsky [39,40], and the coupled cluster method
[41]. Because the resonant states are square integrable, they
can be normalized to one. As illustrated in Fig. 1, the spectrum
of the rotated Hamiltonian (7) consists of bound and unbound
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FIG. 1. (Color online) Illustration of the complex-scaling trans-
formation of a many-body Hamiltonian. Bound states and many-body
thresholds are invariant. Resonant eigenvalues corresponding to poles
of the resolvent or the S matrix are “hidden” on a sheet with ϑ = 0
(a) but are exposed if the cuts associated with many-body continua
are rotated (b) [42].

states. The continuum part of the spectrum is represented
by cuts in the complex-energy plane at an angle 2ϑ with
the real-energy axis, originating at many-body thresholds.
The resonant spectrum consists of bound states lying on
the negative real energy axis and positive-energy resonances.
One attractive feature of the CS method is that one does
not need to apply directly any boundary condition to obtain
the resonant states. Through the CS transformation U (ϑ), all
resonant wave functions have decaying asymptotic behavior.
Even though the solution of the complex-rotated Hamiltonian
Hϑ is square integrable, the back-rotated wave function is
an outgoing solution of the Schrödinger equation with the
original Hamiltonian H . The back-rotation transformation, or
analytical continuation, will be investigated in the following.

While the rotated nonresonant continuum states depend on
the rotation angle, resonant states should be independent of
ϑ . In practical applications, however, Eq. (6) cannot be solved
exactly and usually a truncated basis set is adopted. As a con-
sequence, the positions of resonant states move slightly with ϑ
and/or the size of the (truncated) basis. Since the dependence
on ϑ is radically different for the continuum spectrum and the
resonant states, there exist practical techniques to identify the
resonance solutions. One of them is the so-called ϑ-trajectory
method: using the generalization of the virial theorem to
complex energies, one finds that the resonant solution must
change little with ϑ around a certain value of ϑ = ϑopt. In this
work, we checked carefully the dependence of resonant states
on both ϑ and basis parameters.

1. Slater-basis expansion

To solve the CS problem, we use a finite Slater-type basis
set [34]. Namely, the eigenstate of the original Hamiltonian is

assumed to be

�JM (x13,x23) =
∑
{lj}

∑
A

C
{lj}
A χ

{lj}
A (r13,r23)YJMT Tz

{lj} (x13,x23),

(11)

where the linear expansion coefficients C
{lj}
A are determined

by the Rayleigh-Ritz variational principle. Here x13 and
x23 denote the spatial and spin-isospin coordinates of first
and second particle, respectively. For brevity we introduce
the compact notation {lj} = l13,j13,l23,j23. Furthermore, we
introduce the spin-isospin part

YJMT Tz

{lj} (x13,x23) = χT Tz
(1,2)

[[Yl13 (r13) ⊗ χ1/2(1)
]j13

⊗ [Yl23 (r23) ⊗ χ1/2(2)
]j23

]JM
,

where the solid spherical harmonics are Ylm(r) = rlYlm(r̂).
The symbol [⊗]JM denotes the angular momentum coupling
and r̂ ij stands for the angular coordinates of r ij . The total
isospin and single-nucleon spin functions are, respectively,
denoted by χT,Tz

(1,2) and χ1/2(i) i = 1,2.
For the radial part of the wave function we use the product

of Slater-type functions:

χ
{lj}
A (r13,r23) = rn

13e
−αr13 rm

23e
−βr23 , (12)

where the nonlinear parameters of the basis may depend
on the quantum numbers {lj} and they are denoted by A =
{α,n,β,m}. At this point, we neglect the internucleon distance
r12 in the radial part in order to span the same subspace of the
Hilbert space as the GSM. (When the three-body wave function
does not depend on the interparticle distance r12 one refers to
the resulting set as the Slater basis. If all three coordinates are
considered, the basis set is called a Hylleraas basis.)

In the LS coupling, the wave function (11) can be written
in the form

�JM (x13,x23) =
∑
{lj}

∑
LS

∑
A

C
{lj}
A χ

{lj}
A (r13,r23)

× γLS({lj})[YL
l13l23

(r13,r23) ⊗ χS(1,2)
]JM

×χT Tz
(1,2), (13)

where

YLM
l1l2

(r1,r2) =
∑

m1,m2

〈l1m1,l2m2|LM〉Yl1,m1 (r1)Yl2,m2 (r2)

(14)

are the bipolar harmonics, χSSz
(1,2) are coupled total spin

functions, and γLS({lj}) are recoupling coefficients [43]. In
the case of a many-body system, the trial wave function is
expanded in a many-body antisymmetric basis in a coupled
or uncoupled scheme. In our formalism, we use the fully
antisymmetrized wave functions expressed in both LS- and
JJ-coupling schemes. The trial wave function of the CS
Hamiltonian has the same form as Eq. (11):

�JM
ϑ (x13,x23)

=
∑
{lj}

∑
A

C
{lj}
A (ϑ)χ {lj}

A (r13,r23)YJMT Tz

{lj} (x13,x23), (15)
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but the expansion coefficients C
{lj}
A (ϑ) now depend on ϑ

and they are determined by using the generalized variational
principle.

2. Two-body matrix elements in CS

Since the CS wave function is of Slater type, one needs to
develop a technique to compute two-body matrix elements
(TBMEs). In the following, we briefly review a method
developed in the context of atomic physics applications
[44–46].

Since we employ the LS coupling scheme, for TBMEs we
need to consider integrals of the type

〈A′{l′j ′}|V12|A{lj}〉 =
∫

dτχ
{l′j ′}
A′ (r13,r23)YL

l′13l
′
23

(r̂13,r̂23)∗

×V12(r12)χ {lj}
A (r13,r23)YL

l13l23
(r̂13,r̂23).

(16)

To compute (16), we make a coordinate transformation to
the three scalar relative coordinates r12,r13,r23 and three
Euler angles (	) corresponding to a triangle formed by
three particles. The volume element dτ = d r13d r13 can be
then written as dτrd	, where the radial volume element is
given by dτr = dr12dr13dr23 r12r13r23, and d	 corresponds to
the angular volume element involving the Euler angles. The
angular integral

WL
l′1l

′
2,l1l2

(r12,r13,r23)

=
∫

d	 YL
l′1l

′
2
(r13,r23)∗YL

l1l2
(r13,r23) (17)

can be calculated analytically [46], and the result is

WL
l′1,l

′
2,l1,l2

(r12,r13,r23)

= r
l1+l′1
13 r

l2+l′2
23

∑
λ

A(l′1,l
′
2,l1,l2,L,λ)Pλ

(
r2

13 + r2
23 − r2

12

2r13 r23

)
,

(18)

where

A(l′1,l
′
2,l1,l2,L,λ)

= 1

2
(−1)Ll̂1 l̂2 l̂

′
1 l̂

′
2(−1)λ(2λ + 1)

(
l′1 l1 λ
0 0 0

)
×

(
l′2 l2 λ
0 0 0

) {
l1 l2 L
l′2 l′1 λ

}
, (19)

with ĵ ≡ √
2j + 1. The presence of the Legendre polynomial

Pλ in Eq. (18) shows that the function WL
l1,l2,l

′
1,l

′
2
(r12,r13,r23) is

a multinomial in the variables r12, r13, and r23. The interaction
matrix element (16) can now be written in the compact form

〈A′{l′j ′}|V12|A{lj}〉

=
∫ ∞

0
dr13 r13

∫ ∞

0
dr23 r23

∫ r13+r23

|r13−r23|
dr12 r12

×χ
{l′j ′}
A′ (r13,r23)χ {lj}

A (r13,r23)

×V12(r12)WL
l′13,l

′
23,l13,l23

(r12,r13,r23). (20)

Finally, we determine the radial integrals. By using the
functional form of the basis (12) and the dependence of the
function WL

l1,l2,l
′
1,l

′
2
(r12,r13,r23) on the integration variables, it

follows that the building block of the calculation is the integral

I (λ)(n13,n23)

=
∫ ∞

0
dr13

∫ ∞

0
dr23

∫ r13+r23

|r13−r23|
dr12 r12r

n13
13 r

n23
23

×V12(r12)Pλ

(
r2

13 + r2
23 − r2

12

2r13r23

)
exp(−a13r13 − a23r23),

(21)

where

a13 = α′ + α, a23 = β ′ + β, (22)

and

n13 = n′ + l′13 + n + l13 + 1, n23 = m′ + l′23 + m + l23 + 1.

(23)

The integral (21) can be easily calculated if the form factor of
the interaction is exponential, Yukawa-like, or Coulomb [47].
For a Gaussian form factor (e.g., Minnesota force), the integral
(21) is more involved and the relevant expressions are given
in the Appendix.

C. Gamow shell model

The Gamow shell model is a complex-energy configuration
interaction method [10], where the many-body Hamiltonian
is diagonalized in a one-body Berggren ensemble [48] that
contains both resonant and nonresonant states. The total GSM
wave function is expanded in a set of basis states similar to
Eq. (11). The basis functions ψ

(α)
lj (r) can here be represented

by the eigenfunctions of a single-particle (s.p.) Hamiltonian
(3) with a finite-depth potential V (r):(

− �
2

2μ
�r + V (r)

)
ψ

(α)
lj (r)[Yl(r̂) ⊗ χ1/2(1)]jm

= εαψ
(α)
lj (r)[Yl(r̂) ⊗ χ1/2(1)]jm. (24)

The resonant eigenstates (bound states and resonances), which
correspond to the poles of the scattering S matrix, are obtained
by a numerical integration of the radial part of Eq. (24) by
assuming the outgoing boundary conditions

ψ(r)
r→0= rl+1, ψ(r)

r→∞= H+
l (kr), (25)

where Hl(kr) is a Hankel function (or Coulomb function for
protons). The resulting s.p. energies εα and the associated
linear momenta (kα = √

2meα/�) are in general complex. As
illustrated in Fig. 2, bound states are located on the imaginary
momentum axis in the complex k plane whereas the resonances
are located in its fourth quadrant. The s.p. Hamiltonian also
generates nonresonant states, which are solutions obeying
scattering boundary conditions. The resonant and nonresonant
states form a complete set (Berggren ensemble) [48,49]:∑

b,r

∣∣ψα
b,r

〉〈
ψα

b,r

∣∣ +
∫

L+
dk

∣∣ψα
k

〉〈
ψα

k

∣∣ = 1, (26)

014330-4



NUCLEAR THREE-BODY PROBLEM IN THE COMPLEX . . . PHYSICAL REVIEW C 89, 014330 (2014)

weakly bound state

well bound state

   narrow 
resonance

    broad
resonance

L+

Im
[k

]

Re[k]

non-resonant continuum

FIG. 2. (Color online) Berggren ensemble in the complex k plane
used to generate the s.p. basis of the GSM.

which is a s.p. basis of the GSM. In Eq. (26) b (=bound) and
r (=resonance) are the resonant states, and the nonresonant
states are distributed along a complex contour L+. In our
implementations, the continuum integral is discretized by
using a Gauss-Legendre quadrature. The shape of the contour
is arbitrary. The practical condition is that the contour
should enclose narrow resonances for a particular partial
wave. Additionally, the contour is extended up to a certain
momentum cutoff kmax. Then convergence of results is checked
with respect to both the number of shells and the s.p. cutoff. For
a sufficient number of points (shells), the basis (26) satisfies
the completeness relation to a very high accuracy.

The total wave function is expanded in the complete set of
the Berggren’s ensemble:

�JM (x13,x23)

=
∑
{lj}

∑
n

∑
m

C
(n,m)
{lj} ψ

(n)
l13j13

(r13)ψ (m)
l23j23

(r23)YJMT Tz

{lj} (x13,x23).

(27)

The resonant GSM wave function is normalized to one by
using the external complex-scaling technique [10]. Comparing
Eqs. (27) and (11), we notice that the GSM and CS-Slater
wave functions differ by their radial parts. The expansion
coefficients C

(n)
lj ’s are determined variationally from the

eigenvalue problem∑
α′

1 α′
2

(
Hα1α2α

′
1α

′
2
− ECα′

1 α′
2

) = 0, (28)

where α indices represent the s.p. nlj quantum numbers.
Since the basis is in general complex, Hα1α2α

′
1α

′
2

is a non-
Hermitian complex symmetric matrix. The Berggren ensemble
involves functions which are not L2 integrable. Consequently,
normalization integrals and matrix elements of operators are
calculated via the external complex-scaling technique [50].

The GSM Hamiltonian is given by Eq. (4). The s.p. potential
V (r) = V13(r) = V23(r) represents the interaction between
the α core and the neutron, and μ = μ1 = μ2. The same
interaction V (r) is also used to generate the s.p. basis (24).

1. Two-body matrix elements in the GSM

Once the basis is generated one needs to calculate TBMEs
in the Berggren basis. Since the Berggren basis is obtained nu-
merically, the standard Brody-Moshinsky bracket technology
[51], developed in the context of the harmonic oscillator (HO)
s.p. basis, cannot be employed. To overcome this difficulty, we
expand the nucleon-nucleon (NN) interaction in a truncated
HO basis [52]:

VNN =
Nmax∑
αβγ δ

|αβ〉〈αβ|VNN |γ δ〉〈γ δ|. (29)

The TBMEs in the Berggren ensemble are given by

〈ãb|VNN |cd〉 =
nmax∑
αβγ δ

〈ãb|αβ〉〈αβ|VNN |γ δ〉〈γ δ|cd〉, (30)

where the Latin letters denote Berggren s.p. wave functions
and Greek letters denote HO states. Due to the Gaussian
fall-off of HO states, no external complex scaling is needed
for the calculation of the overlaps 〈αβ|ab〉. Moreover, matrix
elements 〈αβ|VNN |γ δ〉 of the NN interaction in the HO basis
can be conveniently calculated by using the Brody-Moshinsky
technique [51]. This method of treating the TBMEs of the
interaction is similar to the technique based on a separable
expansion of the potential [53]. The HO basis depends on the
oscillator length b, which is an additional parameter. However,
as was demonstrated in Refs. [52,54], GSM eigenvalues and
eigenfunctions converge for a sufficient number of nmax, and
the dependence of the results on b is negligible. We shall return
to this point in Sec. IV A below.

2. Model space of the GSM

The CS and GSM calculations for the 0+ ground state (g.s.)
of 6He have been performed in a model space of four partial
waves: p3/2, p1/2, s1/2, and d5/2. The Berggren basis consists
of the 0p3/2 resonant state, which is found at an energy of
0.737 − i0.292 MeV and the p3/2 complex contour in order
to satisfy the Berggren’s completeness relation. In the actual
calculation, we used a triangular contour located in the fourth
quadrant of the complex k plane that includes the 0p3/2 single-
particle resonance. The momentum cutoff used was kmax =
3.5 fm−1.

The remaining partial waves p1/2, s1/2, and d5/2 are taken
along the real axis. Each contour is discretized with 60 points;
hence, our one-body space consists of a total of 241 neutron
shells. Within such a basis, results are independent of the
contour extension in k space. The finite-range Minnesota
interaction was expanded in a set of HO states. For the
g.s., when a relatively large set of HO quanta is used, the
dependence of the results on the HO parameter b is negligible.
We took b = 2 fm and we used all HO states with up to
nmax = 18 radial nodes. Since the s wave enters the Berggren
ensemble, in order to satisfy the Pauli principle between core
and valence particles we project out the Pauli forbidden 0s1/2

state (b = 1.4 fm) using the Saito orthogonality condition
model [55].

For the excited unbound 2+ state of 6He we limit ourselves
to a p3/2 model space. As concluded in Ref. [56], the structure
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of this state is dominated by a (p3/2)2 parentage. Moreover,
in this truncated space the neutron radial density becomes
less localized since the 2+ state becomes less bound when the
model space is increased. The width of this state increases from
∼250 keV in the (p3/2, p1/2, s1/2, d5/2) space to ∼580 keV in
the truncated space of p3/2 waves. Dealing with a broader
resonance facilitates benchmarking with CS back-rotation
results and helps pin down the dependence on HO parameters
in GSM calculations. The p3/2 continuum was discretized
with a maximum of 60 points. This ensures fully converged
results with respect to the Berggren basis (both the number of
discretization points and kmax).

III. BACK ROTATION: FROM COMPLEX SCALING
TO GAMOW STATES

Even if the energies of resonant states in CS and the GSM
are the same, the wave functions are different [see Eqs. (9) and
(10)]. This implies that the respective expectation values of
an observable Ô in states �(r13,r23) and �ϑ (r13,r23) cannot
be compared directly. Moreover, when the wave function
�ϑ (r13,r23) is used, one has to deal with the transformed
operator

Ôϑ = U (ϑ)ÔU (ϑ)−1. (31)

In some cases, it is straightforward to derive the transformed
operator. For instance, in the calculation of the root-mean-
square radius, the transformed operator is e2iϑ r2

13 + e2iϑ r2
23.

The transformed recoil operator is given by −e−2iϑ �
2

m3
∇r13∇r23 ,

and the angular correlation function is the mean value of the
operator δ(θ12 − θ ), where θ12 is the angle between the vectors
r13 and r23. For the radial density, the situation is not that
simple and we shall discuss this point in the following.

In order to retrieve the Gamow wave function of the original
Schrödinger equation, it is tempting to carry out a direct back-
rotation of the CS wave function (11):

e−i3ϑ
∑
{lj}

∑
A

C
{lj}
A (ϑ)χ {lj}

A (e−iϑ r13,e
−iϑ r23)YJMT Tz

{lj} (x13,x23).

(32)

It turns out, however, that this method is numerically unstable.
Even for one particle moving in a potential well, the direct
back-rotation leads to unphysical large oscillations in the
wave function [17,18]. To prevent this, a proper regularization
procedure needs to be applied [57,58].

The radial density is defined as the mean value of the
operator:

1
2 [δ(r13 − r) + δ(r23 − r)] . (33)

By using the CS wave function (32) and the Slater-type radial
basis functions (12), the density can be cast into the form

ρϑ (r) = r2
∑

j

Cj (ϑ)rnj exp(−aj r), (34)

where Cj (ϑ) are related to the linear expansion parameters
(15), obtained from the diagonalization of the complex-scaled
Hamiltonian (6). If we consider the direct back-rotated wave

function, the radial density is given by

ρback
ϑ (r) = e−iϑ ρ̃ϑ (e−iϑ r), (35)

where

ρ̃ϑ (r) = r2
∑

j

Cj (ϑ)rnj exp(−aj r). (36)

The factor r2 comes from the volume element when the Dirac
delta function in Eq. (33) is integrated. We shall see that the
density calculated in this way leads to extremely inaccurate
results. In the following, we briefly show how to calculate
the density of the original Gamow state using the CS wave
function. Illustrative numerical examples will be presented in
Sec. IV B.

We may consider Eq. (36) as a definition of a function
defined along the non-negative real axis and ρ̃ϑ (e−iϑ r) can be
viewed as an attempt to extend (36) into the complex plane. Our
approach to the analytic continuation is fairly general. Given
an arbitrary analytic function which is known only along the
real axis with some error, the objective is to establish its value
at some complex argument. To this end, we use the Tikhonov
and Fourier transformation methods. In our applications, the
function in question is the density ρ̃ϑ (r), which can represent
neutral or charged particles. Indeed, from the point of view of
the analytical continuation, it does not matter whether or not
the valence particles are charged, since the related procedure
is not related to the actual solution of the many-body problem.
Of course, if the complex-scaled density is poorly determined,
the Tikhonov and Fourier methods will fail. However, if the
density ρ̃ϑ (r) is calculated with good accuracy, as we shall
demonstrate below, the Tikhonov method is superior to direct
back-rotation.

Since the coefficients Ci(ϑ) obtained numerically are not
accurate enough, and moreover the Slater expansion is always
truncated, the analytical continuation of ρ̃ϑ is not a simple
task. To find a stable solution, we apply a method based on the
theory of Fourier transformations. We first extend ρ̃ϑ (r) from
(0,∞) to (−∞,∞) by means of the mapping

fϑ (x) = ρ̃ϑ (r0e
−x). (37)

The Fourier transform of (37) is

f̂ϑ (ξ ) = 1√
2π

∫ ∞

−∞
e−ixξ fϑ (x) dx

= 1√
2π

∑
j

Cj (ϑ)r
nj +2
0

�(nj + 2 + iξ )

(r0aj )nj +2+iξ
, (38)

where ξ and x are dimensionless variables.
Usually, f̂ϑ is determined with an error, which results in the

appearance of high-frequency oscillations in fϑ . Now we shall
apply Tikhonov smoothing [59] to fϑ (x + iy). To this end, we
perform the analytical continuation of fϑ (x) to the complex
plane x + iy [57]:

fϑ (x + iy) = 1√
2π

∫ ∞

−∞
dξ ei(x+iy)ξ f̂ϑ (ξ ). (39)
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FIG. 3. (Color online) Convergence of the 6He total g.s. energy
and two-body and one-body terms, with respect to the number of
Slater orbitals, NS, for α = β = 0.8.

Tikhonov regularization [58] removes the ultraviolet noise in
Eq. (39) by introducing a smoothing function

f
reg
ϑ (x + iy) = 1√

2π

∫ ∞

−∞
ei(x+iy)ξ f̂ϑ (ξ )

1 + κe−2yξ
dξ, (40)

where κ is the Tikhonov smoothing parameter. In the actual
calculation we take x = − ln(r/r0), y = ϑ , and r0 = 1 fm.

IV. RESULTS

For the neutron-core interaction we employ the KKNN
potential [60] and the interaction between the valence neutrons
is approximated by the Minnesota force [61]. We study the
convergence properties of the CS-Slater method not only for
energies of 0+

1 and 2+
1 of 6He and individual energy compo-

nents but also for radial properties and spatial correlations.

A. Energies

According to (4) the total Hamiltonian of 6He is the sum
of one-body terms H13(r13) + H23(r23) and two-body terms
− �

2

m3
∇r13∇r23 + V12(r12). Figure 3 illustrates the convergence
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FIG. 4. (Color online) Similar to Fig. 3 but for the nonlinear
Slater basis parameter α = β for NS = 27.

of the CS energies with respect to the basis size NS � n + m
[see Eq. (12) for notation]. A similar type of restriction was
used in Refs. [31,32] in order to avoid the linear dependence of
the basis functions. For the nonlinear parameters of the Slater
basis we assumed the value α = β = 0.8. The dependence on
the Slater basis parameter α is shown in Fig. 4 for NS = 27.

In Figs. 3 and 4, horizontal solid lines correspond to
GSM results. The maximum difference between CS and GSM
energies is of the order of 2 keV for the total energy and
two-body and and one-body terms. As can be seen in Fig. 4,
two-body and one-body terms have no minima with respect to
α. This is expected as it is the total energy that is supposed to
exhibit a variational minimum, not its individual contributions.
The two- and one-body terms coincide with the GSM result
for a slightly different variational parameter (α ∼ 1.1) than
the one that corresponds to the minimum of the total energy
(α = 1.5). Nevertheless, the difference at the minimum is very
small, of the order of 2 keV.

Table I displays the energy budget for the bound g.s.
configuration of 6He in GSM and CS methods. Even though
it is not necessary to use CS for a bound state, we also show
values for ϑ = 0.2, for reasons that will be explained later in
Sec. IV B. In this case, the expectation value of the transformed
operator Ôϑ = U (ϑ)ÔU (ϑ)−1 was computed. It is seen that
the excellent agreement is obtained between the GSM and

014330-7



KRUPPA, PAPADIMITRIOU, NAZAREWICZ, AND MICHEL PHYSICAL REVIEW C 89, 014330 (2014)

TABLE I. Energy decomposition of the 6He g.s. Values are in MeV.

〈Ô〉 GSM CS (ϑ = 0) CS (ϑ = 0.2)

〈 Ĥ 〉 − 0.249 − 0.247 −0.247 + i1.1 × 10−3

〈 T̂ 〉 24.729 24.731 24.733 − i7.27 × 10−3

〈 Vc−n〉 − 21.642 − 21.645 −21.647 + i4.76 × 10−3

〈 Vnn〉 − 2.711 − 2.710 −2.710 + i3.11 × 10−3

〈 �p1· �p2
m3

〉 − 0.625 − 0.623 −0.623 + i5.04 × 10−3

both CS variants not only for the total energy but also for all
Hamiltonian terms.

We now move on to the 2+ unbound excited state of
6He. To assess the accuracy of computing this state in the
GSM, we test the sensitivity of calculations to the HO
expansion (30). It is worth noting that in the GSM method
only the two-body interaction and recoil terms are treated
within the HO expansion. The kinetic term is calculated in the
full Berggren basis; hence, the system maintains the correct
asymptotic behavior. Moreover, for the 2+ state in the p3/2

model space, the recoil term vanishes. The resonance position
in the CS-Slater method is determined with the ϑ-trajectory
method. Figure 5 displays the result of our tests. Overall, we
see a weak dependence of the energy and width of the 2+ state
predicted in the GSM on the HO expansion parameters nmax

and b. The increase of nmax from 6 to 28 results in an energy
(width) change of ∼20 keV (∼10 keV). With increasing nmax,
the results become less dependent on the oscillator length b.
For the real part of the energy, there appears some stabilization
at large values of nmax. but the pattern is different for different
values of b. The most stable results are obtained with b = 2
fm, where we find a broad plateau for both the energy and the
energy modulus [15,62,63] for nmax > 16. We adopt the value
of bopt = 2 fm for the purpose of further benchmarking.
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FIG. 5. (Color online) Dependence of the energy (a) and width
(b) of the unbound 2+

1 state in 6He calculated with the GSM on the
HO expansion parameters nmax and b (=1.2, 1.5, 2.0, and 2.4 fm) in
Eq. (30). The CS-Slater result is marked by a dotted line.

TABLE II. Similar to Table I but for the 2+
1 resonance. In GSM

calculations, we used bopt = 2 fm and nmax = 20 (GSMI) and nmax =
24 (GSMII). The optimal scaling angle ϑopt = 0.43 was obtained with
the ϑ-trajectory method.

〈Ô〉 CS (ϑ = ϑopt) GSMI GSMII

〈 Ĥ 〉 1.239 − i0.291 1.239 − i0.292 1.239 − i0.290
〈 T̂ 〉 17.340 − i7.949 17.311 − i7.825 17.221 − i7.766
〈 Vc−n〉 −15.831 + i7.408 −15.805 + i7.288 −15.717 + i7.231
〈 Vnn〉 −0.270 + i0.250 −0.267 + i0.244 −0.265 + i0.244

The pattern for the width is similar, with no clear plateau
but very small differences at large nmax. Such a behavior is
not unexpected. While the variational arguments do not apply
to the interaction but to the trial wave function [15,62,63],
one can demonstrate [52,54] that, while the matrix elements
exhibit weak converge with nmax, eigenvectors and energies
show strong convergence. However, the actual convergence is
very slow for broad resonant states.

Based on our tests presented in Fig. 5 we conclude that the
numerical error of the GSM method, due to HO expansion, on
the energy and width of the 2+

1 resonance in 6He is ∼ 2 keV.
This accuracy is more than needed to carry out the CS-GSM
benchmarking.

Table II displays the energy budget for the unbound 2+
1 state

of 6He. We show two variants of GSM calculations in which
the interaction was expanded in a HO basis with bopt = 2
fm and nmax = 20 (GSMI) and 24 (GSMII). The real parts
of the total energy are identical in both methods up to the
third digit, and the imaginary parts up to second digit. For the
other parts of the Hamiltonian, results are not as precise as
for the g.s. calculations in Table I; nevertheless, we obtain an
overall satisfactory agreement. It is encouraging, however, that
for the total complex energy the agreement is excellent. The
benchmarking results presented in this section demonstrate
the equivalence of GSM and CS-Slater methods for energies
of bound and unbound resonance states. In the following, we
shall see that this equivalence also holds for the many-body
wave functions.

Our approach can be compared with CS calculations of
Ref. [26] in a Gaussian basis in a model space consisting
of partial waves up to d5/2. Their ground-state energy of
−0.244 MeV and 2+

1 energy of 1.23 − i0.275 MeV are in a
good agreement with our results listed in Tables I and II. This
work [26] demonstrated the advantage of using a correlated
basis (mixed “T” and “V” Jacobian coordinates) over the single
“V”-type basis.

Our g.s. prediction and also those of Ref. [26] do not
reproduce the experimental value. The discrepancy occurs (i)
because correlations that are of importance for the detailed
description of 6He are neglected [64,65]) and (ii) because
of the relatively small number of partial waves employed in
our work and Ref. [26]. In the three-body calculation of 6He
[26,64,66]—using the same interactions as in our work and
performed in a very large model space—the binding energy
was found to be −0.73 and −0.78 MeV with the “V”-type and
“V+T”-type coordinates, respectively. In the Lagrange-mesh

014330-8



NUCLEAR THREE-BODY PROBLEM IN THE COMPLEX . . . PHYSICAL REVIEW C 89, 014330 (2014)

10-4

GSM

Slater basis

HO basis

r (fm)
4 8 12 16

10-3

10-2

10-1

on
e-

ne
ut

ro
n 

de
ns

ity
 (f

m
-1

)

0+ g.s. of 6He

FIG. 6. (Color online) Ground-state one-neutron radial density in
6He predicted with GSM, CS-Slater, and HO basis sets.

calculations using the hyperspherical coordinates [67], the
binding energy was further reduced to −0.87 MeV. One may
thus say that the hyperspherical description is capable of
incorporating more correlations. However, if all calculations
are fully converged with respect to both the number of partial
waves and the number of radial wave functions, then the
discrepancy has to be attributed to some differences in the
actual implementation of the model, such as the treatment of
the angular-momentum dependence of the α − n potentials
[67] or removal of Pauli forbidden states [67,68]. (In this
context, it is worth mentioning that a strategy that is often used
in nuclear configuration interaction calculations is to choose a
specific model space and refit the effective interaction. In this
way, some “missing” correlations can be absorbed into the
parametrization of the force.) However, since the purpose of
our paper is to propose a new numerical technique rather than
provide a precise description of the 6He binding mechanism,
we have limited ourselves to smaller model spaces to facilitate
benchmarking.

B. One-body densities

To assess the quality of wave functions calculated with
the GSM and CS-Slater methods, we first calculate the radial
one-neutron density of the g.s. of 6He. Figure 6 shows that
both methods are consistent with each other and they correctly
predict exponential fall-off at large distances. We also display
the one-neutron density obtained with the radial part of the
wave function (11) spanned by the radial HO basis states with
b = 2 fm and nmax = 18. As expected, the HO result falls
off too quickly at very large distances due to the incorrect
asymptotic behavior.

The g.s. of 6He is a bound state; hence, its description
does not require a complex rotation of the Hamiltonian.
Nevertheless, it is instructive to study the effect of CS on
its radial properties. Figure 7 shows the g.s. one-neutron
density obtained with the CS-Slater method using ϑ = 0.1.
For comparison we also display the unscaled (ϑ = 0) density
of Fig. 6. We see that the one-particle density is ϑ dependent
and for ϑ > 0 it acquires an imaginary part. Since the integral
of the density is normalized to 1, the integral of the imaginary
part should be zero. This was checked numerically to be

0 5 10 15

0

0.1

0.2

   = 0.0

   = 0.1

   = 0.1 back-rotated

Re( )

r (fm)

on
e-

ne
ut

ro
n 

de
ns

ity
 (f

m
-1

)

Im( )

0+ g.s. of 6He

FIG. 7. (Color online) Ground-state one-neutron radial density in
6He predicted with CS-Slater method using ϑ = 0 (dotted line) and
0.1 (solid line). The back-rotated ϑ = 0.1 result is marked by a dashed
line.

indeed the case. Since the back-rotated density should be
equivalent to the unscaled or GSM one, its imaginary part
should vanish. However, as seen in Fig. 7, the back-rotated
density at ϑ = 0.1 is nonzero. This is indicative of serious
problems with back-rotation in CS, if this method is applied
directly [17,18].

In order to investigate back-rotation in more detail, we
consider the 2+

1 resonance in 6He. As in Sec. IV A, we limit
ourselves to a p3/2 model space to better see the effect of back-
rotation; by adding more partial waves, the 2+ state becomes
more localized and the CS density resembles the GSM result.
The one-body density derived from the rotated CS solution
is very different from the GSM density (see Fig. 8). As the
theory implies, the CS density is localized, and the degree
of localization increases with ϑ [17]. To compare with the
GSM density, which has outgoing asymptotics, we need to
back-rotate the CS radial density.

A comparison of the back-rotated CS-Slater and GSM 2+-
state densities is presented in Figs. 9 and 10. Here the problem
with the back-rotated CS density is far more pronounced than
for the g.s. case shown in Fig. 7: at r > 2 fm, the real part of
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FIG. 8. (Color online) Real part of one-neutron radial density for
the unbound 2+ state in 6He obtained in the GSM (solid line) and in
the CS-Slater method (ϑopt = 0.43).
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GSM
Tikhonov back-rot CS

direct back-rot CS

FIG. 9. (Color online) Real part of one-neutron radial density for
the unbound 2+ state in 6He obtained in the back-rotated (dashed line)
and Tikhonov-regularized-back-rotated (solid) CS-Slater method at
ϑopt. The GSM density is marked by a dotted line.

the back-rotated density exhibits unphysical oscillations. The
magnitude of those oscillations grows with ϑ , even if the basis
size is increased. The situation is even worse for the imaginary
part of the density, which does not resemble the GSM density
at r > 1 fm.

The numerical instability of the back-rotated CS wave
functions is an example of an ill-posed inverse problem [69].
The amplitudes of the wave function (36) are determined
numerically, and the associated errors are amplified during the
back-rotation (35), causing instabilities seen in Figs. 9 and 10.
Consequently, one needs a regularization method to minimize
the errors that propagate from the coefficients to the solution.
In this paper, we apply the Fourier analytical continuation
and Tikhonov regularization procedure [58,59] described in
Sec. III.

We first investigate the Fourier transform (39), which
provides us with an analytical continuation of the density.
It is understood that if one performs the integral in the full
interval (−∞,∞), the analytically continued density would
also exhibit unwanted oscillations. Indeed, at large negative
values of ξ in (39), the exponent may become very large,
amplifying numerical errors of the Fourier transform f̂ϑ (ξ )
and causing numerical instabilities. For this reason we cut the

GSM
Tikhonov back-rot CS

direct back-rot CS

FIG. 10. (Color online) Similar to Fig. 9 but for the imaginary
part of the density.

GSM

Fourier back rot CS: Λξ = -8

Fourier back rot CS: Λξ = -16

FIG. 11. (Color online) Real part of one-neutron radial density
for the 2+ resonance in 6He obtained in the back-rotated CS-Slater
method using the Fourier-regularized analytical continuation with
�ξ = −8 (solid line) and �ξ = −16 (dashed line). The GSM density
is marked by a dotted line.

lower range of ξ in Eq. (39) to obtain the expression for the
Fourier-regularized function:

fϑ (x + iy) = 1√
2π

∫ ∞

�ξ

ei(x+iy)ξ f̂ϑ (ξ )dξ. (41)

Figure 11 compares the GSM density of the 2+ resonance
in 6He with back-rotated CS-Slater densities obtained using
the Fourier-regularized analytical continuation. By taking the
cutoff parameter �ξ = −8 we obtain a density that is almost
identical to that of the GSM. With �ξ = −16, the analytically
continued density starts to oscillate around the GSM result,
and with even larger negative values of cutoff used, the high-
frequency components become amplified and eventually one
recoups the highly fluctuating direct back-rotation result of
Fig. 9.

In the Tikhonov method, the sharp cutoff �ξ is replaced
by a smooth cutoff (or filter) characterized by a smoothing
parameter κ . In Eq. (40) this has been achieved by means
of the damping function (regulator) [1 + κ exp(−2yξ )]−1 that
attenuates large negative values of ξ , with the parameter κ
controlling the degree of regularization. The functional form
of the regulator is not unique; it depends on the nature
of the problem. In the applications presented in this study,
the analytically continued density coincides with the ϑ-
independent result for κ = 4 × 10−4, which also corresponds
to the original resonant GSM solution. The results presented in
Figs. 9 and 10 demonstrate that both real and imaginary parts of
the resonance’s density obtained in the Tikhonov-regularized
CS-Slater method are in excellent agreement with the GSM
result.

To understand in more detail the mechanism behind the
Tikhonov regularization, in Fig. 12 we display the real part
of the integrand in Eq. (39) at r = 20 fm, ϑopt = 0.43, and
κ = 0 (no regularization) and κ = 4 × 10−7 and 4 × 10−4. In
the absence of a regulator, at ξ < −10 the integrand exhibits
oscillations with increasing amplitude. Below ξ = −8, all
three variants of calculations are very close; this explains
the excellent agreement between GSM and back-rotated CS
results in Fig. 11 with �ξ = −8. In short, with the Tikhonov
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FIG. 12. (Color online) Real part of the integrand in Eq. (40),
calculated at r = 20 fm, ϑopt = 0.43, and κ = 0, 4 × 10−7, and 4 ×
10−4. To see the detailed behavior at small negative values of ξ , the
region of −18 � ξ � −1 is shown in the inset.

method, large values of the integrand at large negative values
of ξ are suppressed, thus enabling us to obtain an excellent
reproduction of the resonant density in the GSM.

It is instructive to study the behavior of the analytically
continued back-rotated CS density for different Tikhonov
regularization parameters κ . As mentioned earlier, the value
κ = 4 × 10−4 was found to be optimal; i.e., it produces the
CS-Slater densities that are closest to those of GSM. As seen
in Fig. 13, for smaller values of κ , the damping function is
too small to eliminate the oscillations at large negative ξ
values. This is also depicted in Fig. 12, where for κ = 4 × 10−7

unwanted oscillations of the integrand appear around ξ ∼ 16.
For larger values of κ , the integral is over-regulated and
produces a suppressed density profile. Similar patterns of κ
dependence have been found in other studies [70–73].

The behavior seen in Fig. 13 suggests a way to determine
the optimal value of the smoothing parameter κ , regardless of
the availability of the GSM result. The idea behind our method
is presented in Fig. 14, which shows the values of ρ(r) at two
chosen large distances rκ (here rκ = 3 and 6 fm) versus κ in
a fairly broad range. As expected, at large and small values of

GSM

= 4×10-1

 = 4×10-4

 = 4×10-7

FIG. 13. (Color online) Real part of one-neutron radial density
for the 2+ resonance in 6He obtained in the back-rotated CS-Slater
method using the Tikhonov regularization with several values of
smoothing parameter κ .

GSM

Tikhonov back-rot CS

FIG. 14. (Color online) Real (a) and imaginary (b) parts of one-
neutron radial density at r = 3 and 6 fm for the 2+ resonance in
6He, as a function of the Tikhonov regularization parameter κ . In an
intermediate region of κ values (gray shading), plateaus appear that
coincide with the GSM results.

κ , ρ(rκ ) shows strong variations with the Tikhonov smoothing
parameter. However, at intermediate values, a plateau in ρ(rκ )
appears that nicely coincides with the GSM results. Our
optimal choice, κopt = 4 × 10−4, belongs to this plateau.

C. Two-body angular densities

The two-body density contains information about two-
neutron correlations. It is defined as [74]

ρ(r,r ′) = 〈�|δ(r − r1)δ(r ′ − r2)|�〉. (42)

FIG. 15. (Color online) Angular two-neutron density for the 6He
g.s. predicted in the GSM and CS-Slater methods.
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FIG. 16. (Color online) Similar as in Fig. 15 but for the 2+

resonance.

In spherical coordinates, it is convenient to introduce [56]

ρ(r,r ′,θ ) = 〈�|δ(r1 − r)δ(r2 − r ′)δ(θ12 − θ )|�〉, (43)

with r1 (r2) being the distance between the core and the first
(second) neutron and θ12 being the opening angle between
the two neutrons. The density ρ(r,r ′,θ ) differs from the
two-particle density (42) by the absence of the Jacobian
8π2r2r ′2 sin θ . Consequently, the two-body density is normal-
ized according to ∫

ρ(r,r ′,θ )drdr ′dθ = 1. (44)

In practical applications, (43) is calculated and plotted for
r = r ′.

By parametrizing the wave function in terms of the distance
r from the core nucleus and the angle θ between the valence
particles, one is able to investigate the particle correlations in
the halo nucleus. Such calculations were performed recently
[56] to explain the observed charge radii differences in helium
halo nuclei [75]. To study angular correlations between valence
particles, we introduce the angular density

ρ(θ12) =
∫

dr

∫
dr ′ρ(r,r ′,θ12). (45)

Figures 15 and 16 display ρ(θ12) for the g.s. and 2+
1 resonance,

respectively. The agreement between GSM and CS-Slater
methods is excellent. It is worth noting that the calculation
of the angular density in the CS-Slater framework does not
require back-rotation. Indeed, since the CS operator (5) acts
only on the radial coordinates, once they are integrated out one
obtains the unscaled result.

V. CONCLUSIONS

In this work, we introduce a new efficient CS method in a
Slater basis to treat open many-body systems. We apply the
technique to the two-neutron halo nucleus 6He considered as a
three-body problem. The interaction between valence neutrons
is modeled by a finite-range Minnesota force.

To benchmark the new method, we computed the weakly
bound g.s. and 2+

1 resonance in 6He in both CS-Slater and
GSM methods. We carefully studied the numerical accuracy
of both methods and found it more than sufficient for the
purpose of benchmarking. Based on our tests, we find both
approaches to be equivalent for all the quantities studied.
In a parallel development [76,77], the CS method in a
Gaussian basis [78] has been compared with the GSM
method for 6He and 6Be and a good overall agreement has
been found.

An important aspect of our study was the application of the
Tikhonov regularization technique to CS-Slater back-rotated
wave functions in order to minimize the ultraviolet numerical
noise at finite scaling angles ϑ . We traced back the origin of
high-frequency oscillations to the high-frequency part of the
Fourier transform associated with the analytic continuation
of the CS wave function and found a practical way to
determine the smoothing parameter defining the Tikhonov
regularization. The applied stabilization method allows us to
reconstruct the correct radial asymptotic behavior by using
localized complex-scaled wave functions. This can be of
importance when calculating observables that are directly
related to the asymptotic behavior of the system, such as cross
sections or decay widths. The proposed method is valid not
only for narrow resonances (as for example Ref. [19]) but
also for broad resonant states, such as the excited 2+ state
of 6He.

In the near future, we intend to include the internu-
cleon distance r12 in Eq. (12) to obtain the full Hyller-
aas basis that promises somehow improved numerical con-
vergence and higher accuracy. This will enable us to
formulate a reaction theory directly in Hylleraas coor-
dinates. The near-term application could include α + d
elastic scattering and radiative capture reactions as in
Ref. [28] and atomic applications such as electron-hydrogen
scattering.
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APPENDIX: RADIAL INTEGRALS

To simplify the radial integral (21) we use the explicit
form of the Legendre polynomial Pλ(x) = ∑λ

n=0 ηλ,nx
n and
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the binomial theorem to get

I (λ)(n13,n23) =
λ∑

n=0

ηλ,n2−n

n∑
k=0

(
n

k

) k∑
m=0

(−1)k
(

k

m

) ∫ ∞

0
dr13 r

n13+n−2k+1
13 e−a13r13

×
∫ ∞

0
dr23 r

n23+2k−2m−n+1
23 e−a23r23

∫ r13+r23

|r13−r23|
dr12 r2m+1

12 V12(r12). (A1)

Now we make a variable transformation from the relative coordinates r12, r13, and r23 to the Hylleraas coordinates s, t , and u
defined by the equations s = r13 + r23, t = r13 − r23, and u = r12. Expressed in s, t , and u, the radial volume element becomes
dτr = 1

8 (s2 − t2)ds du dt , and (A1) can be written as

I (λ)(n13,n23) =
λ∑

n=0

ηλ,n2−n

n∑
k=0

(
n

k

) k∑
m=0

(−1)k
(

k

m

) N13+1∑
k13=0

N23+1∑
k23=0

2−3−N13−N23

(
N13 + 1

k13

)(
N23 + 1

k23

)
(−1)k23

×
∫ ∞

0
ds e−assN13+N23+2−k13−k23

∫ s

0
du uN12V12(u)

∫ u

0
dt tk13+k23e−bt , (A2)

where a = 1
2 (a13 + a23), b = 1

2 (a13 − a23), N12 = 2m + 1, N13 = n13 + n − 2k, and N23 = n23 + 2k − 2m − n. With the help
of the integral

I (ns,nt ,nu,a,b) =
∫ ∞

0
ds sns e−as

∫ s

0
du unuV12(u)

∫ u

0
dt tnt e−bt (A3)

we can write

I (λ)(n13,n23) =
λ∑

n=0

ηλ,n2−n

n∑
k=0

(
n

k

) k∑
m=0

(−1)k
(

k

m

) N13+1∑
k13=0

N23+1∑
k23=0

(
N13 + 1

k13

)(
N23 + 1

k23

)
(−1)k23 2−3−N13−N23

× I (N13 + N23 + 2 − k13 − k23,k13 + k23,N12,a,b). (A4)

As the integral over t in Eq. (A3) can be carried out analytically and the integral over u can be computed by using

d

ds

(
− 1

ans+1
�(ns + 1,as)

)
= e−assns , (A5)

one gets

I (ns,nt ,nu,a,b) = 1

(nt + 1)ans+1

∫ ∞

0
ds�(ns + 1,as)snu+nt+1V12(s)M(nt + 1,nt + 2, − bs), (A6)

where M(nt + 1,nt + 2,−bs) is the regular confluent hypergeometric function and �(ns + 1,as) is the incomplete Gamma
function [79]. Expressing these two special functions as finite sums of elementary functions one finally arrives at the compact
general expression

I (ns,nt ,nu,a,b) = ns!nt !

ans+1bnt+1

ns∑
k=0

ak

k!

∫ ∞

0
ds e−assnu+kV (s)

[
1 − e−bs

nt∑
n=0

(bs)n

n!

]
, (A7)

which is valid for any form factor V (r). It is immediately seen that for b = 0 (A7) simplifies to

I (ns,nt ,nu,a,0) = ns!

ans+1(nt + 1)

ns∑
k=0

ak

k!

∫ ∞

0
dse−asV (s)snu+nt+k+1. (A8)

To compute (A7) with a Gaussian form factor V (s) = exp(−f s2), we use∫ ∞

0
ds exp(−as − f s2)sn = (−1)nK (n)(a), (A9)

where K (n)(z) = dn

dzn K(z) with

K(z) = 1

2

√
π

f
exp

(
z2

4f

)
Erfc

(
z

2
√

f

)
. (A10)
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Expressed in terms of the parabolic cylinder function D−n−1(z) [80], K (n)(z) is

K (n)(z) = 1

2

√
π

f

(
1

2
√

f

)n (−1)nn!2(n+1)/2

√
π

exp[z2/(8f )]D−n−1(z/
√

2f ). (A11)
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[26] A. Aoyama, S. Mukai, K. Katō, and K. Ikeda, Prog. Theor. Phys

93, 99 (1995); ,94, 343 (1995).
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M. Takashina, Phys. Rev. C 84, 064610 (2011).
[29] E. A. Hylleraas, Z. Phys. 54, 347 (1929).
[30] M. B. Ruiz, Int. J. Quantum Chem. 101, 246 (2004).
[31] G. Drake, Phys. Scr. T 83, 83 (1999).

[32] G. W. F. Drake, M. M. Cassar, and R. A. Nistor, Phys. Rev. A
65, 054501 (2002).

[33] V. I. Korobov, Phys. Rev. A 61, 064503 (2000).
[34] J. C. Slater, Phys. Rev. 36, 57 (1930).
[35] M. A. Caprio, P. Maris, and J. P. Vary, Phys. Rev. C 86, 034312

(2012).
[36] F. Nunes, J. Christley, I. Thompson, R. Johnson, and V. Efros,

Nucl. Phys. A 609, 43 (1996).
[37] J. Aguilar and J. M. Combes, Commun. Math. Phys. 22, 266

(1971).
[38] E. Balslev and J. M. Combes, Commun. Math. Phys. 22, 280

(1971).
[39] R. Lazauskas and J. Carbonell, Phys. Rev. C 84, 034002 (2011).
[40] R. Lazauskas, Phys. Rev. C 86, 044002 (2012).
[41] K. B. Bravaya, D. Zuev, E. Epifanovsky, and A. I. Krylov,

J. Chem. Phys. 138, 124106 (2013).
[42] W. P. Reinhardt, Annu. Rev. Phys. Chem 33, 223 (1982).
[43] R. D. Lawson, Theory of the Nuclear Shell Model (Clarendon,

Oxford, 1980).
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