8,623 research outputs found

    Ecosystems as climate controllers – biotic feedbacks (a review)

    Get PDF
    There is good evidence that higher global temperature will promote a rise of green house gas levels, implying a positive feedback which will increase the effect of the anthropogenic emissions on global temperatures. Here we present a review about the results which deal with the possible feedbacks between ecosystems and the climate system. There are a lot of types of feedback which are classified. Some circulation models are compared to each other regarding their role in interactive carbon cycle

    Stability implications of delay distribution for first-order and second-order systems

    Get PDF
    Kiss, G., & Krauskopf, B. (2009). Stability implications of delay distribution for first-order and second-order systems. Early version, also known as pre-print Link to publication record in Explore Bristol Research PDF-documen

    Beta-decay properties of neutron-rich Ca, Ti, and Cr isotopes

    Full text link
    Beta-decay properties of neutron-rich Ca, Ti, and Cr isotopes are studied within a deformed proton-neutron quasiparticle random-phase approximation. The underlying mean field is described self-consistently from deformed Skyrme Hartree-Fock calculations with pairing correlations. Residual spin-isospin interactions in the particle-hole and particle-particle channels are also included in the formalism. The energy distributions of the Gamow-Teller strength, the beta-decay feedings, the beta-decay half-lives, and the beta-delayed neutron emission probabilities are discussed and compared with other theoretical results, as well as with the available experimental information. The evolution of these nuclear beta-decay properties is investigated in isotopic chains in a search for structural changes. A reliable estimate of the beta-decay properties in this mass region is a valuable information for evaluating decay rates in astrophysical scenarios.Comment: 11 pages, 12 figure

    Efficiency of the enterprise resource potential

    Get PDF
    The economic value of the results obtained is to improve the methodological approaches to the diagnosis of the resource potential of light industry enterprises and the further development of theoretical aspects of the diagnosis of the enterprise

    Mass and orbit constraints of the gamma-ray binary LS 5039

    Full text link
    We present the results of space-based photometric and ground-based spectroscopic observing campaigns on the gamma-ray binary LS 5039. The new orbital and physical parameters of the system are similar to former results, except we found a lower eccentricity. Our MOST-data show that any broad-band optical photometric variability at the orbital period is below the 2 mmag level. Light curve simulations support the lower value of eccentricity and imply that the mass of the compact object is higher than 1.8 solar masses.Comment: 2 pages, 1 figure (with 2 panels); to be published in the Proceedings: From Interacting Binaries to Exoplanets: Essential Modeling Tools, IAU Symposium 282 (18-22 July, 2011, Tatranska Lomnica, Slovakia

    Complex chaos in conditional qubit dynamics and purification protocols

    Full text link
    Selection of an ensemble of equally prepared quantum systems, based on measurements on it, is a basic step in quantum state purification. For an ensemble of single qubits, iterative application of selective dynamics has been shown to lead to complex chaos, which is a novel form of quantum chaos with true sensitivity to the initial conditions. The Julia set of initial valuse with no convergence shows a complicated structre on the complex plane. The shape of the Julia set varies with the parameter of the dynamics. We present here results for the two qubit case demonstrating how a purification process can be destroyed with chaotic oscillations

    Complex chaos in the conditional dynamics of qubits

    Full text link
    We analyze the consequences of iterative measurement-induced nonlinearity on the dynamical behavior of qubits. We present a one-qubit scheme where the equation governing the time evolution is a complex-valued nonlinear map with one complex parameter. In contrast to the usual notion of quantum chaos, exponential sensitivity to the initial state occurs here. We calculate analytically the Lyapunov exponent based on the overlap of quantum states, and find that it is positive. We present a few illustrative examples of the emerging dynamics.Comment: 4 pages, 3 figure
    corecore