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Abstract

In many situations in physics, engineering and biology time delays
arise naturally due to the time needed to transport information from one
part of the system to another and/or to react to incoming information.
When differential equations are used in the mathematical modeling, then
incorporating time delays leads to a description by a delay differential
equation. We consider here a class of secondorder scalar delay equations
without instantaneous feedback, where the delays enter according to a
distribution function. This is a natural description whenever there are
more than one delay.
In this paper we show that for this class of systems one can derive

stability information about the distributeddelay system by considering
the one delay system where the delay is the mean delay of the distribu
tion function. More specifically, we prove that the asymptotic stability
of the zero solution of the secondorder delay equation with symmetric
delay distribution is implied by the stability of the associated meandelay
equation. Our proof is based on the comparison of stability charts of the
two equations.
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1 Introduction

Many deterministic realworld processes are modelled by a secondorder scalar
ordinary differential equation

ẍ(t) = f(ẋ(t), x(t)), (1)

where f : R2 → R is a su�ciently smooth function. Local stability analysis at
an equilibrium point leads to the equation

ẍ(t) = −aẋ(t)− bx(t), a, b ∈ R. (2)

Apart from arising as a linearized equation, (2) also plays a central role in
engineering as the equation describing damped massspring oscillators, which
are central building blocks of many systems. In this framework, a ∈ R and
b ∈ R are the damping coe�cient and the stiffness parameter, respectively. The
longterm behaviour of (2) and its role for the dynamics of (1) is indeed well
understood.

Delays generally arise in applications due to the time it takes for information
to be processes and/or to �ow between different components of the system.
Hence, when such delays are su�ciently large, they need to be incorporated
into the mathematical model, which then takes the form of a delay differential
equation (DDE) — a special case of the wider class of functional differential
equation (FDEs). More specifically, our starting point is the delayed form of
(2), given by the family of secondorder scalar delay diffential equations

ẍ(t) = −aẋ(t)− bx(t− E), (3)

where E > 0 is a single fixed delay. Since the position variable x appears
only in delayed form, one also refers to (3) as a systems without instantaneous
feedback. When the process under consideration is subject to several delays,
the most natural and general formulation of the delayed problem is given in the
form

ẍ(t) = −aẋ(t)− b

� h

0

x(t− τ)dμ(τ). (4)

Here the integral is of Stieltjestype, and the distribution function μ : R → R is
nondecreasing, rightcontinuous and satisfies

(A1) μ(τ) = 1, if τ ≥ h and

(A2) μ(τ) = 0, if τ < 0,
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for h ≥ 0. Conditions (A1) and (A2), together with the monotonicity of μ,
imply that

� h

0

dμ(τ) = 1.

Observe that (3) is a special case of (4) for the special choice of distribution
function

μE(x) =

�
1, if x ≥ E;
0, if x < E.

(5)

An important di�culty is that, in many situations, the delays and, hence,
the distribution function μ are not known exactly; instead, the main information
about the problem is the average or mean or expectation of the delay, given by

� h

0

τdμ(τ).

Is this useful information? In other words, what knowledge can we gain about
the stability of (4) if we have information about the stability properties of (3)
when E is the corresponding mean delay of the distribution μ in (4)? This paper
addresses this question about the role of delay distribution for the class (4) of
secondorder systems without instantaneous feedback.

Indeed, the impact of delay distribution on stability was investigated by
quite a number of authors. For instance, in [1] a general method was established
to approximate the bound of the stability region for an arbitrary distribution
function. An ecological system given by a nonlinear DDE, the linearization
of which is (4), was investigated in [2] for specific distributions. In [3] the
effect of delay distribution was investigated from a control theoretic point view;
it was shown that if the feedback is stabilizing (respectively, destabilizing),
then a discrete delay is locally the most stabilizing (respectively, destabilizing)
among delay distributions with the same mean. Also from a control theoretic
point view, delay distribution has been used in [4] to approximate the behavior
of systems with time varying delay. Recently, some tra�c �ow models with
distributed delays were investigated in [5], where the delay distribution models
driver reaction times. In [6] a symmetry condition was posed on η : [−r, 0] → R,
under which it was shown that the zero solution, x ≡ 0, of

ẋ(t) =

� 0

−r

x(t + s)dμ(s) (6)

is asymptotically stable if and only if

� 0

−r

sin
�
−
s

r
π
�
dμ(s) <

π

r
. (7)

When assuming that (A1) and (A2) hold and that μ : R → R is a monotonically
nondecreasing function with expectation value E, then the symmetry condition
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of [6] is equivalent to saying that μ is symmetric about its mean E, in the sense
that

μ(E − x) = 1− μ(E + x− 0). (8)

We remark that if y = E − x, y ∈ [0, 2E] then

μ(y) = 1− μ(2E − y − 0), y ∈ [0, 2E].

Considering 2E = h, we get μ(y) = 1 − μ(h − y − 0), y ∈ [0, h]; furthermore,
μ(τ) = 0, if τ < 0 and μ(τ) = 1, if τ ≥ h.

In [7] the firstorder DDE

ẋ(t) = −ax(t)− b

� 0

−h

x(t + s)μ(s) (9)

was considered in the same spirit of determining its stability from the corre
sponding equation for the mean delay, and a su�cient condition for the stability
of the zero solution was derived when μ is a symmetric delay distribution. In [8]
we presented a slightly different and complete proof of this result. In this pa
per we assume that the delay distribution is given by a symmetric distribution
function and we carry out a study of the stability region of the zero solution of
(4) in the spirit of [8]. More precisely, we establish the following main result.

Theorem 1.1. Let μ be symmetric about its expectation E. Then the zero so
lution of (4) is asymptotically stable if the zero solution of (3) is asymptotically
stable.

Hence, we show that the asymptotic stability of the zero solution, x ≡ 0, of
(3) for parameters a, b ∈ R and E ∈ R

+ — the mean delay associated with μ in
(4) — implies the stability of the zero solution of (4) (for the same values of a
and b). In other words, a symmetric delay distribution has a stability preserving
effect on the zero solution. Our work can be considered as a generalization of
the finding in [2] that replacing the single delay in (3) by two symmetrically
distributed discrete delays increases the stability of the system. Note that this
result was also derived in [9] with another proof, namely the method of proof
also used here. More concretely, the underlying idea in [9, 8] for the study
of stability properties of the single and the distributed delay equations is the
comparison of stability charts. The purpose of the present paper is to formulate
and proof in a more general setup the result of [9], where particular secondorder
equations were studied that can be considered as special cases of (4) with two
delays.

One could paraphrase Theorem 1.1 by saying that symmetric delay distri
bution not only increases the stability for the secondorder scalar DDEs in the
class given by (4), but its effect is also similar to the firstorder DDEs given
by (9). By this we mean that, in a certain part of the parameter space, the
mean value of delays contains enough information to decide about the stability
of the zero solution of (4). In other words, in the modelling process, even if the
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distribution is known, the model with only the mean delay gives useful practi
cal information about stability. We remark that this statement is not obvious,
because it may not hold for other classes of secondorder equations. In fact, we
showed in [8] that for the equation

ẍ(t) = −ẋ(t)− ax(t)− b

� h

0

x(t− τ)dμ(τ) (10)

symmetric delay distribution is not stability preserving without further assump
tions.

We finally mention that, from an application point of view, our work is
motivated by the relatively new field of substructuring or hybrid testing of en
gineering structures. In this testing approach the system under consideration
is split into two main parts: a critical part of interest is tested in the labo
ratory, and the remainder of the system is run via a model on the computer.
The two subsystems are mutually coupled by feeding measurements from the
tested part into the computer model, and by driving the laboratory test with
output from the model, for example, via electric or hydraulic actuators. Delays
arise naturally in this setting, both from running the computer model and due
to a delay before actuation is achieved. In practice, the delay from the model
computation can often be neglected. On the other hand, experiments show that
the delay of the actuators is generally quite large (on the order of a few hundred
milliseconds) and may in�uence the stability of the overall test [10, 11]. Hence,
the field of hybrid testing provides a rich class of DDEs; see also [12, 13]. In
this context, the singledelay equation (3) could be interpreted as describing
damped massspring oscillators where information of the position of the mass
is not available instantaneously. Similarly, the distributeddelay equation (4)
could be interpreted as describing the damped massspring oscillators when one
performs different independent measurements of the same state variable (in this
case the displacement of the mass) but subject to delays as given by the weight
function μ. In a different interpretation of (4), one may consider not only the
delay due to the actuator, but also that arising from running the computer
model which yields a model with distributed delays. The paper is organized as
follows. In Section 2 we first introduce some notation and recall some facts on
DDEs. We then determine in Section 3 the stability chart of (3); this also allows
us to set up the theoretical framework of studying curves of purely imaginary
solution to the characteristic equation. This setup is then used in Section 4 to
proof Theorem 1.1. Finally, in Section 5 we draw some conclusion and point to
future work.

2 Background and notation

This section serves to introduce notions that will play a crucial role in the proof
of our main result in Sec. 4. We start by recalling some general facts of the
general theory of DDEs; see, for example, [14, 15]. Our object of study are
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linear autonomous equations of the general form

ẋ(t) =

� h

0

dη(θ)x(t − θ) (11)

where η(θ), 0 ≤ θ ≤ h, is an n× n matrix of normalized functions of bounded
variation, so that η is continuous from the right on (0, h) and η(h) = 1. A
solution x : Rn → Rn of (11), for a given η and h > 0, is a differentiable function
satisfying (11). Let C = C([−h, 0],Rn) denote the Banach space of continuous
functions mapping the interval [−h, 0] into Rn, with the supremum norm, and
define xt ∈ C as xt(θ) = x(t + θ), θ ∈ [−h, 0]. A solution xφ : [0,∞) → R is

uniquely determined by xφ
0 = φ ∈ C. The unique solution with initial function

φ ∈ C determines a map

F (t, φ) : R
+ × C � (t, φ) �→ xφ

t ∈ C

and the solution operator is

T (t)φ : C � φ �→ F (t, φ) ∈ C, t ≥ 0.

The solution operator is a strongly continuous semigroup with an infinitesimal
generator A, the spectrum σ(A) ⊂ C of which is formed by its point spectrum.
Furthermore, λ ∈ σ(A) if and only if λ satisfies the characteristic equation

det

�

λI −

� h

0

e−λθdη(θ)

�

= 0. (12)

The roots of (12) are called characteristic roots. Stability analysis of (11) is
based on the following result.

Theorem 2.1. [15] The zero solution of equation (11) is asymptotically stable
if and only if the real part of all characteristic root of (12) is negative.

Hence, local stability investigations can be carried out by finding the zeros
of the characteristic function

∆(λ) : C � λ �→ det

�

λI −

� h

0

e−λθdη(θ)

�

∈ C.

A di�culty for the stability analysis is that the characteristic function is an an
alytic function possessing countably infinitely many zeros; see, for example, [16]
for examples of stability analysis based on characteristic roots. The following
lemma is a useful tool in the stability analysis of parameterdependent systems;
throughout Re(λ) and Im(λ) denote the real and imaginary parts of a λ ∈ C,
respectively.

Lemma 2.1. [17] Let f(λ, α) = λn+g(λ, α) be an analytic function with respect
to λ and α, where α ∈ Rm and λ ∈ C with Re(λ) > −β for a positive constant
β. Assume that

lim sup{|λ−ng(λ, α)| : Re(λ) ≥ 0, |λ| → ∞} < 1.
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Then, as α varies, the sum of the roots of f(λ, α) = 0 in the open right halfplane
can change only if a root appears on or crosses the imaginary axis.

3 Stability of the singledelay system

We now determine the stability region of the zero solution of (3), where we make
use of a method that can be found in [14]. This section also serves to introduce
notions that will play a crucial role in the proof of our main result in Sec. 4.

Recall that (3) is a special case for (4) for μ = μE . The corresponding
characteristic function and equation are

∆(λ) : C � λ �→ λ2 + aλ + be−λE ∈ C (13)

and
λ2 + aλ + be−λE = 0. (14)

The following two propositions exclude certain part of the parameter plane
from the stability region of (3).

Proposition 3.1. For b ≤ 0 the zero solution of (3) is not asymptotically
stable.

Proof. If b = 0, then λ = 0 is always a characteristic root.
For b < 0, one considers

f(x) : R � x �→ x2 + ax + be−xE ∈ R,

the restriction of the corresponding characteristic function to the real line. Then
the fact that f(0) = b < 0, together with the continuity of f and the fact that
limx→∞ f(x) = ∞, implies the existence of an x∗ > 0 such that f(x∗) = 0.

Proposition 3.2. For a < 0 the the zero solution of (3) is not asymptotically
stable.

Proof. The proof of the following proposition is based on Pontryagin’s method;
see [18]. Let us assume that the zero solution is asymptotically stable. Then,
because of Theorem 2.1, all characteristic roots lie to the left of the imaginary
axis. Consider now (13) in the following equivalent form

H(λ) : C � λ �→ (λ2 + aλ)eλE + b ∈ C. (15)

The assumption on the real part of the zeros of (15) implies that there is
no zero in the rectangle Pkα = {(x, y) : 0 ≤ x ≤ α,−2kπ + ε ≤ y ≤ 2kπ + ε}.
We show for the vector w = H(iy) that v(−2kπ, 2kπ) = 4kπ + 2π + δ1, where
v(α, β) is the change in the vector w when y ∈ (α, β] and limk→∞ δ1 = 0. To
this end, first notice that v(α + ε, β + ε) = v(α, β) + δ2, where ε ∈ R is fixed
and limα→±∞ δ2 = 0. Indeed, the fact

H(i(α + ε))

H(iα)
=

�
−(α + ε)2 + a(α + ε)i

�
eiεeiα

(−α2 + αai)eiα + b
+

b

(−α2 + αai)eiα + b
(16)
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implies
lim

α→±∞
v(α, α + ε) = ε + δ3.

Applying the latter, together with the evident fact that v(α, β) = v(α, γ) +
v(γ, δ), we obtain

v(α + ε, β + ε) = v(α + ε, α) + v(α, β) + v(β, β + ε) = v(α, β) + δ4.

(Here we also used the fact that v(x, y) = −v(y, x).)
Next we show that vk(−2kπ+ε, 2kπ+ε) = 4kπ+2π+δk, where limk→∞ δk =

0. As a consequence of the Argument principle, the angle variation of the vector

w under z2ez is the sum of the variation for its factors. Because
(eiπ/2)

2

(e−iπ/2)
2 =

ei2π, for the function z2 the variation on the given three sides of Pkα is 2π.
Since ea+(2kπ+ε)i = eaeεi, on the intervals [(2kπ + ε)i, α + (2kπ + ε)i] and
[α − (2kπ − ε)i,−(2kπ − ε)i] the angle variation of the vector w under the
function ez is zero.

On the other hand, the total number Nk of zeros of the function H(z) inside
the rectangle Pkα is equal to the number of full revolutions of the vector w =
H(z), when z traverses all sides of the rectangle. Thus Nk = T3−vk(−2kπ, 2kπ).
On the other hand, because of the assumption on the number of zeros in Pkα,
we have that Nk = 0; that is, T3 = vk(−2kπ, 2kπ).

Let

H(iy) = F (y) + G(y)i (17)

= −y2 cos(y)− a sin(y) + b + (−y2 sin(y) + ay cos(y))i. (18)

The argument above implies the existence of distinct points yj ∈ (−2kπ +
ε, 2kπ + ε), where j = 1, 2, . . . , l and 4k + 2 ≤ l, such that the curve w = H(iy)
and the line −y2 cos(y)−a sin(y)+b in the complex plane have an intersection at
each yj . This fact implies that the function R � y �→ −y2 sin(y) + ay cos(y) ∈ R

has at least 4k + 2 zeros; or equivalently, the equation

a cot y = y (19)

has at least 4k+ 1 roots. However, one can readily see that (19) has at most 4k
solutions for a < 0. This contradiction implies that there is at least one root in
the rectangle Pkα, so that the zero solution of (3) is indeed not asymptotically
stable.

The following lemma tells us that there are parameter values in the (a, b)
plane such that the zero solution of (3) is asymptotically stable.

Proposition 3.3. If a > 0, b > 0 and bE ≤ a then the zero solution of (3) is
asymptotically stable.

Proof. We consider the equation

ẍ(t) = −aẋ(t)− bx(t− εE), ε ∈ [0, 1] (20)
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and its characteristic equation

λ2 + aλ + be−λεE = 0. (21)

For ε = 0 it reduces to
λ2 + aλ + b = 0, (22)

with roots

λ1,2 =
−a±

√
a2 − 4b

2

having negative real parts. Now, assume that (21) with b ≤ a has a root with
nonnegative realpart. Then, because of Lemma 2.1, there is an ε0 ∈ (0, 1] such
that (21) has a pair of roots ±iω0, where ω0 > 0.

Substitution of iω0 into (20) results in

−ω2
0 + aiω0 + b(cos(ω0ε0E)− i sin(ω0ε0E)) = 0, (23)

which gives

b cos(ω0ε0E) = ω2
0 , (24)

b sin(ω0ε0E) = aω0. (25)

Clearly (27) has no positive root if b ≤ 0.

From Lemma 3.3, we know that the line b = a
E

does not bound the stability
region from above. To find the upper bound we follow the method of [14,
Chapter 11]. For equation (3), the assumption of the existence of a characteristic
root iω, ω > 0, after separating the real and imaginary parts of the left–hand
side of (14), results in the two equations:

b cos(ωE)− ω2 = 0, (26)

b sin(ωE)− aω = 0. (27)

With the aid of these equations, we can define the two functions

ak(ω) : I±k → R, ω �→
ω sin(ωE)

cos(ωE)
, (28)

bk(ω) : I±k → R, ω �→
ω2

cos(ωE)
, (29)

where I+
k = (0, π/2), for k = 0 and I−k = ((4k − 3)π/2, (4k − 1)π/2), I+

k =
((4k− 1)π/2, (4k + 1)π/2) for k ∈ N \ {0}. Finally, for k ∈ N, we can define the
following parametrized curves

Γ±k =

��
ω sin(ωE)

cos(ωE)
,

ω2

cos(ωE)

� �
�
�ω ∈ I±k

�

.

Notice that the functions ak and bk are even so it su�ces to consider the case
ω > 0.
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We now define an order (denoted by the symbol ≺) on a collection of non
intersecting plane curves, where our interest is in curves Γ±k as defined above.
We consider the graph

Gr(Γ) = {(f(x), g(x)) : x ∈ I}

of a curve
Γ(x) : I → (f(x), g(x)) ∈ R

2

defined on an interval I ⊂ R. Consider now two curves Γ1 = {(f1(x), g1(x)) :
x ∈ I1} and Γ2 = {(f2(x), g2(x) : x ∈ I2} on I1 and I2, respectively, and such
that Gr(Γ1)∩Gr(Γ2) = ∅. Then Γ1 is said to be below Γ2 — denoted Γ1 ≺ Γ2 —
if there are x1 ∈ I1 and x2 ∈ I2 such that f1(x1) = f2(x2) and g1(x1) < g1(x2).
Alternatively, we say that Γ2 is above Γ1.

The curve Γ+
0 = {(a(ω), b(ω))|ω ∈ I}, together with the line b = 0, forms

the boundary of the stability region in the parameter (a, b)plane. This follows,
because, if we set a = a(ω), b = b(ω) where ω ∈ I, then the characteristic
equation of (3) has a purely imaginary root. Proposition 3.3 implies that there
is no characteristic root with positive real part below this curve and, hence, the
zero solution x ≡ 0 of equation (3) is asymptotically stable.

Figure 1 shows the curves Γ±k for k = 0, 1, 2 and the line b = 0 in the (a, b)
plane for E = 1. The figure illustrates that, for i < j, one has Γ+

i ≺ Γ+
j and

Γ−j ≺ Γ−i , which is a fact that is not hard to prove. The number of unstable
characteristic roots is indicated for each region; the zero solution is stable in
the grey shaded region. This can be validated after introducing the following
functions.

F (a, b; s) : R
2 × C � (a, b; s) �→ Re

�
s2 + as + be−sE

�
∈ R,

G(a, b; s) : R
2 × C � (a, b; s) �→ Im

�
s2 + as + be−sE

�
∈ R,

and the matrix

M =

�
DaF DbF
DaG DbG

��
�
�
�
(a,b;s)=(a0,b0,iω0)

. (30)

Here (a0, b0) is a point on one of the curves defined via (28) and (29), and ω0 is
the corresponding parameter value. The determinant of M determines how the
critical roots in the complex plane depend on two parameters; namely, we will
use the following result.

Theorem 3.1 ([14, Chapter 11, Proposition 2.13] ). The critical roots are in
the parameter region to the left of the curve (a(ω), b(ω)), when we follow this
curve in the direction of increasing ω, whenever detM < 0 and to the right
when detM > 0.

Here we have

M =

�
0 cos(ωE)
ω − sin(ωE)

��
�
�
�
(a,b;s)=(a0,b0,iω0)

. (31)
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Figure 1: The curves Γk for k = 0, 1, 2, 4 and the line b = 0 of
(3). The number of characteristic roots with positive real parts
are indicated in each region; the shaded part of the image is the
stability region of the zero solution of (3).

This statement means that, because of (28), a(ω) is a monotone increasing
function of ω on each of the intervalls I±k . Furthermore, because of (29), the
effect of changing parameters on the purely imaginary roots depends only on
the sign of b(ω).

To conclude this section, we derive a su�cient and necessary condition for
the asymptotic stability of the zero solution of (3).

Proposition 3.4. If a > 0, b > 0 in (3) then its zero solution is asymptotically
stable if and only if

E <
2 arccos

�
−a2+

√
a4+4b2

2b

�

�√
a4 + 4b2 − a2

.

By a simple rescaling of time, (3) takes the form

1

E2
ẍ(t) = −a

1

E
ẋ(t)− bx(t− 1), (32)

which is clearly equivalent to

ẍ(t) = −aEẋ(t)− bE2x(t− 1). (33)

Assuming that the characteristic equation

λ2 + aEλ + bE2e−λ

11



of (33) has a pair of purely imaginary roots ±iω with ω > 0, one obtains

ω2 = bE2 cos(ω), (34)

Eωa = bE2 sin(ω). (35)

Squaring and adding the last two equations result in the quadratic equation for
ω2: �

ω2
�2

+ E2a2ω2 − E4b2 = 0. (36)

The only solution of (36) satisfying the positivity assumption on ω is

ω2 =
−E2a2 +

√
E4a4 + 4E4b2

2
, (37)

which gives

ω =

�

−E2a2 +
√
E4a4 + 4E4b2

2
, (38)

on the one hand, and – after substituting (37) and (38) into (34) –

E =
2 arccos

�
−a2+

√
a4+4b2

2b

�

�√
a4 + 4b2 − a2

(39)

on the other hand.

4 Proof of the main result

We now extend the approach presented in the previous section to obtain infor
mation about the upper bound of the stability region of the zero solution of the
distributed delay equation (4). More specifically, to prove Theorem 1.1 we show
that the stability region of (3) is included in the corresponding stability region
of (4). Our method of proof effectively follows, with suitable modifications, the
steps taken in [8] in our proof for the firstorder case. We present the argument
in the form of several Propositions that lead to the statement of Theorem 1.1.

In this section the corresponding characteristic function

∆E(λ) : C � λ �→ λ2 + aλ + b

� h

0

e−λτdμ(τ) ∈ C (40)

and equation

λ2 + aλ + b

� h

0

e−λτdμ(τ) = 0 (41)

of (4) will play the crucial role.
With a slight modification of the argument used in the proof of Lemma 3.1,

we obtain the following.
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Proposition 4.1. For b ≤ 0 the zero solution of (3) is not asymptotically
stable.

To make the notation shorter, we adopt the notation of [7] of writing C(ω) =
� h

0
cos(ωτ)dμ(τ) and S(ω) =

� h

0
sin(ωτ)dμ(τ).

We will need the following.

Proposition 4.2. If μ is a symmetric distribution then

C(ω) = 2 cos(ωE)

� E

0

cos(ωτ)dμ(τ)

and

S(ω) = 2 sin(ωE)

� E

0

cos(ωτ)dμ(τ).

Proof. Let

νE : R � τ �→
μ(τ)

2
∈ R.

Because of the symmetry assumption on μ, 2νE is symmetric around E. Thus

C(ω) = 2

� 2E

0

cos(ωτ)dνE(τ)

= 2

� E

0

cos(ω(E − τ)) + cos(ω(E + τ))dνE(τ)

= 2 cos(ωE)

� E

0

cos(ωτ)dμ(τ).

The statement for S(ω) could be shown in the same way.

We can now prove the analogue of Proposition 3.3.

Proposition 4.3. If a > 0, b > 0 and bE ≤ a then the zero solution of (4) is
asymptotically stable if μ is symmetric.

Proof. We consider the following equation

ẍ(t) = −aẋ(t)− b

� 2E

0

x(t− ετ)dμ(τ), ε ∈ [0, 1] (42)

and its characteristic equation

λ2 + aλ + b

� 2E

0

e−λετdμ(τ) = 0. (43)

For ε = 0 it reduces to
λ2 + aλ + b = 0, (44)

which has the roots

λ1,2 =
−a±

√
a2 − 4b

2

13



with negative real parts. Now, assume that (43) with bE ≤ a has a root with
nonnegative realpart. Then, because of Lemma 2.1, there is an ε0 ∈ (0, 1] such
that (43) has a pair of roots ±iω0, where ω0 > 0. Substitution of iω0 into (42)
results in

−ω2
0 + aiω0 + b(C(ω0ε0)− iS(ω0ε0)) = 0. (45)

But for the imaginary part of the left–hand side we have

aω0 − bS(ω0ε0) = aω0 − 2b sin(ω0ε0E)

� E

0

cos(ω0ε0τ)dμ(τ)

≥ aω0 − b sin(ω0ε0E)

≥ ω0a

�

1−
sin(ε0ω0E)

ω0E

�

> 0.

We continue this section with the adaptation of the method applied in Sec
tion 3 It is clear that if iω, ω > 0 is a root of (41), then −iω is a root as well.
Thus we restrict our attention to ω ≥ 0. If we assume that (43) has a root of
the form iω, ω > 0 then this leads to the system of equations:

bC(ω)− ω2 = 0, (46)

bS(ω)− aω = 0. (47)

Let Ω = {ω : C(ω) = 0, ω ≥ 0} be the zeroset of C(ω) associated with (4). It
is easy to see that Ω �= ∅.

Although, in general, C(ω) is not periodic, the following proposition never
theless gives the possibility to define a curve segment on I±k .

Proposition 4.4. Let E > 0; then π
2E

+ kπ
E
∈ Ω, k ∈ Z.

Proof. With the aid of Proposition 4.2 we get that

C(x + y) = 2 (cos(xE) cos(yE)− sin(xE) sin(yE))

� E

0

cos ((x + y)τ) dμ(τ),

which validates the statement.

From Proposition 4.4 we know that I±k ∩ Ωc �= ∅. Thus we can define the

subintervals Î+
k,l and Î−k,m, 1 ≤ l ≤ i, 1 ≤ m ≤ j of I±k as the results of

intersecting I±k with Ωc, where Ωc is the complement of Ω. Here i and j are the
(kdependent) numbers of those subintervals. We can now define the curves

Γ̂+
k,l : Î+

k,l � ω �→ (âk,l(ω), b̂k,l(ω)) ∈ R
2,

with Γ̂−k,m defined in the same way, where âk,l(ω) and b̂k,l(ω) are determined
by (46) and (47). Throughout, if a statement depends on an interval Ik, but
independent from any of it subintervals corresponding to (4), we drop the second
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subindex in our notation. Furthermore, if the statement is independent of the
interval of definition, we drop both the subindexes.

The following lemma is the key for the comparison of the stability regions
of (4) and (3).

Lemma 4.1. If C(ω0) = 0 then

lim
ω→ω0

âk(ω) = lim
ω→ω0

ak(ω).

Furthermore, âk ≡ ak|Îk
.

Proof. Using Proposition 4.2, we get the following

lim
ω→ω0

âk(ω) = lim
ω→ω0

ωS(ω)

C(ω)
= lim

ω→ω0

ω sin(ωE)

cos(ωE)
= lim

ω→ω0

ak(ω).

The relative positions of curves defined via the functions a(ω) and b(ω) may
be quite complicated, but the following lemma shows an important feature of
them. To formulate it we introduce the notation that, for an arbitrary function
Γ(x) : I → (f(x), g(x)) ∈ R2, the symbol |Γ| denotes the function |Γ(x)| : I →
(f(x), |g(x)|) ∈ R2.

Lemma 4.2. Let μ : R → R in (4) be symmetric about its mean E > 0. Then
Γ0 ≺ |Γ+

k,l| and Γ0 ≺ |Γ
−
k,m| on Ĩ+

k and Ĩ−k , respectively, for 1 ≤ l ≤ i, 1 ≤ m ≤
j.

Proof. Using (46) and then applying Proposition 4.2, we obtain the function

b̂(ω) =
ω2

C(ω)
=

ω2

2 cos(ωE)
� E

0 cos(ωτ)dμ(τ)
=

b(ω)
� E

0 cos(ωτ)dμ(τ)
.

That is,

Gr(Γ±k,l) =

��

ω
sin(ωE)

cos(ωE)
,

ω2

2 cos(ωE)
� E

0
cos(ωτ)dμ(τ)

�
�
�
�ω ∈ I±k,l

�

.

Since 2
� E

0
cos(ωτ)dμ(τ) ≤ 1, it follows that |b̂(ω)| > b(ω), ω ∈ I±k,l. Further,

if I±k,l = (ωL, ωR) then

lim
ω→ωL

|b̂(ω)| = lim
ω→ωR

|b̂(ω)| = ∞

when ωL �= 0.
Thus Γ+

k ≺ Γ+
k,l, Γ+

k ≺ |Γ−k,m|, Γ−k,m ≺ Γ−k and |Γ−k | ≺ Γ−k,m, on the associated
intervals. Notice that k, l,m were arbitrary. Hence, because of the fact that
Γ0 ≺ Γ+

k and Γ−k ≺ Γ0, k ∈ N, the proof is complete.
Note that

lim
ω→0+

a(ω) = lim
ω→0+

â(ω) = − lim
ω→0+

b̂(ω) = lim
ω→0+

b(ω) =
1

E
.
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We are now able to prove Theorem 1.1. The matrix corresponding to (4)
that is used in Theorem 2.1 takes the form

M̂ =

�
0 C(ω)
ω −S(ω)

��
�
�
�
(a,b;s)=(a0,b0,iω0)

. (48)

With the aid of M from (31) and M̂ above, one can see that the behavior of

the critical roots corresponding to (3) and (4) depends only on b(ω) and b̂(ω).
In either case the roots are above the corresponding curve in the upper half
and below the corresponding curve in the lower half of the (a, b)plane. From
Proposition 4.3 we know that there are parameter pairs for which the zero
solution of (4) is asymptotically stable. Proposition 4.2 tells us the parameter
pairs for which the zero solution of (4) is not asymptotically stable are above
Γ0. This arguments validates our main statement, Theorem 1.1.

4.1 An example with two delays

To illustrate the di�culties arising when comparing the relative positions of the
curves Γ̂k,l, we consider the DDE

ẍ(t) = −aẋ(t)− b
1

2

�

x

�

t−
1

3

�

+ x

�

t−
5

3

��

, (49)

which has two delays that are (symmetrically) distributed around E = 1.
Figure 2 (a) shows the curve b = 0 and the curves Γ̂+

k,l, k = 0, 1, for (49);
notice that there are substantially fewer curves in Fig. 2(a) compared to Figure
1 for (3) with E = 1 (which is on the same scale). The shaded region shows
the stability region of the zero solution of (49). The dashed curve is the upper
stability boundary Γ0 for (3) with E = 1; the fact that Γ0 lies well inside the
stability region of (49) illustrates our main result that the distributeddelay
system (49) has increased stability.

As the larger view of the (a, b)plane in panel Figure 2 (b) shows, the curves
Γ̂k,l for (49) are further away from the origin. One can think of these curves
as moving as the measure describing the delay distribution is changed. How
these curves move is very di�cult to say; see also the case study of a twodelay
example in [9] for more details.

5 Summary

We considered the effect of symmetric delaydistribution on the stability of the
zero solution of a secondoder scalar DDE of the form (4) when the expectation
of the delays E > 0 is fixed. Our main result is that for this class of equations
the stability region of (4) is contained in the stability region of the singledelay
DDE (3) for the given expectation value E. This result allows one to make
statements about the stability of the zero solution of (4) by considering the
corresponding stability properties of (3), which is clearly an easier problem.
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Figure 2: The curves Γ̂k for k = 0, 1, 2, 4 and the line b = 0
of (49) in the (a, b)plane. The number of characteristic roots
with positive real parts are indicated in each region; the stability
region of the zero solution of (3) is shaded. The dashed curve is
the stability boundary Γ0 for (3) with E = 1. Panel (a) shows the
(a, b)plane on the scale of Figure 1, and panel (b) shows it on a
larger scale.
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Namely, the stability condition of Proposition 3.4 becomes a su�cient stability
condition for the zero solution of (4). Our result encompasses the special case
of corresponding secondorder DDEs with a finite number of fixed delays, such
as the case of two delays considered in [2].

The overall conclusion is that, in terms of the stability enhancing property of
symmetric delay distribution, the class of secondorder equations (4) is similar
to the firstorder case considered in [7, 8]. Thus, for the class of systems given
by (4) the average delay gives su�cient information for stability investigation.
We stress that this statement is special, because it not true for all secondorder
equations, such as the ones considered in [8]. The characterization of other
classes of equations in which the higher moments of the delay distribution do
not play role is ongoing research.

We finally brie�y mention how our result could be of use in the application
context of hybrid testing. For instance, in an experiment with a single actua
tor the introduction of an artificial time delay between the simulation and the
actuator, together with a substantial delay in the computation time, leads to a
mathematical model with distributed delays. This could give the opportunity
of an experimental verification of our theoretical results. Furthermore, one may
explore how the choice of a particular distribution could be used to keep the
experiment away from delayinduced instabilities.
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