670 research outputs found

    Flame or Lily? Revisited: A Response and Elaboration of Rhodesian Racial Attitudes

    Get PDF
    A Zambezia essay review on racial artitudes in Rhodesia (now Zimbabwe) in the early part of the 1970's.My book Flame or Lily?' was written out of my enthusiasm for the potential insight provided by the white press into white Rhodesian culture, although I was aware that such data do not provide ‘perspectives on the society as a whole, nor the white elite in general’ (p.2). Rather, these editorials provide ‘a restricted definition of Rhodesian culture . . . which may very well reflect the white elite in general’ (p.6). Instead of attempting yet another interpretation of Rhodesian history, I was concerned with presenting the views of white editors over time in order to gain some insight into how these particular Rhodesians defined their situation over time as participants in the society’s major media institution. My focus, then, was on their social definitions of Societal reality rather than my interpretation of these situations for them

    Modelling mechanical percolation in graphene-reinforced elastomer nanocomposites

    Full text link
    Graphene is considered an ideal filler for the production of multifunctional nanocomposites; as a result, considerable efforts have been focused on the evaluation and modeling of its reinforcement characteristics. In this work, we modelled successfully the mechanical percolation phenomenon, observed on a thermoplastic elastomer (TPE) reinforced by graphene nanoplatelets (GNPs), by designing a new set of equations for filler contents below and above the percolation threshold volume fraction (Vp). The proposed micromechanical model is based on a combination of the well-established shear-lag theory and the rule-of-mixtures and was introduced to analyse the different stages and mechanisms of mechanical reinforcement. It was found that when the GNPs content is below Vp, reinforcement originates from the inherent ability of individual GNPs flakes to transfer stress efficiently. Furthermore, at higher filler contents and above Vp, the nanocomposite materials displayed accelerated stiffening due to the reduction of the distance between adjacent flakes. The model derived herein, was consistent with the experimental data and the reasons why the superlative properties of graphene cannot be fully utilized in this type of composites, were discussed in depth.Comment: 29 pages, 12 figure

    Fluidization of Transient Filament Networks

    Get PDF
    Stiff or semiflexible fi laments can be crosslinked to form a network structure with unusual mechanical properties, if the crosslinks at network junctions have the ability to dynamically break and re-form. The characteristic rheology, arising from the competition of plasticity from the transient crosslinks and nonlinear elasticity from the fi lament network, has been widely tested in experiments. Though the responses of a transient fi lament network under small deformations are relatively well understood by analyzing its linear viscoelasticity, a continuum theory adaptable for fi nite or large deformations is still absent. Here we develop a model for transient fi lament networks under arbitrary deformations, which is based on the crosslink dynamics and the macroscopic system tracking the continuously re-shaping reference state. We apply the theory to explain the stress relaxation, the shape recovery after instant deformation, and the necking instability under a ramp deformation. We also examine the role of polydispersity in the mesh size of the network, which leads to a stretched exponential stress relaxation and a diffuse elastic-plastic transition under a ramp deformation. Although dynamic crosslinks are taken as the source of the transient network response, the model can be easily adjusted to incorporating other factors inducing fluidization, such as fi lament breakage and active motion of motor crosslinks, opening a way to address cell and tissue activity at the microscopic level.This work is funded by the Theory of Condensed Matter Critical Mass Grant from EPSRC (EP/J017639)

    Graphene-Polyurethane Coatings for Deformable Conductors and Electromagnetic Interference Shielding

    Get PDF
    Electrically conductive, polymeric materials that maintain their conductivity even when under significant mechanical deformation are needed for actuator electrodes, conformable electromagnetic shielding, stretchable tactile sensors, and flexible energy storage. The challenge for these materials is that the percolated, electrically conductive networks tend to separate even at low strains, leading to significant piezoresistance. Herein, deformable conductors are fabricated by spray‐coating a nitrile substrate with a graphene–elastomer solution. The electrical resistance of the coatings shows a decrease after thousands of bending cycles and a slight increase after repeated folding‐unfolding events. The deformable conductors double their electrical resistance at 12% strain and are washable without changing their electrical properties. The conductivity–strain behavior is modeled by considering the nanofiller separation upon deformation. To boost the conductivity at higher strains, the production process is adapted by stretching the nitrile substrate before spraying, after which it is released. This adaption meant that the electrical resistance doubles at 25% strain. The electrical resistance is found sufficiently low to give a 1.9 dB µm−1 shielding in the 8–12 GHz electromagnetic band. The physical and electrical properties, including the electro magnetic screening, of the flexible conductors, are found to deteriorate upon cycling but can be recovered through reheating the coating

    Characterization Of Epoxy-Coated Oxide Films Using Acoustic Microscopy

    Get PDF
    An adhesive joint consisting of aluminum adherends bonded with an epoxy adhesive is composed of three main layers. The adherends are usually a few millimeters thick with a layer of epoxy adhesive between one and three hundred microns thick between them. The surfaces of the adherends are typically pre-treated to produce a thin film of porous aluminum oxide, which has a honeycomb-like structure. The epoxy adhesive may then penetrate into these honeycomb cells or pores. The resulting layer between the adhesive and adherend is therefore a micro-composite and it is typically of the order of one micron in thickness. The use of the surface pre-treatment is a major factor in increasing the durability of the adhesive joint when it is exposed to water. Additionally, joints which have been in use for some time, especially ones which have been subject to environmental attack, usually experience a failure along the plane of this film. Therefore, characterization of this epoxy/oxide interlayer is very important in understanding adhesive joints and how they are affected by environmental factors. Unfortunately, not much is known about their mechanical properties

    P16-48. Immunologic and virologic characterization of an ART-treated HIV-1 patients cohort with long-term control of viremia

    Get PDF
    Background Long-term treatment of primary HIV-1 infection (PHI) may allow the immune reconstitution of responses lost during the acute viremic phase and decrease of peripheral reservoirs. This in turn may represent the best setting for the use of therapeutic vaccines in order to lower the viral set-point or control of viral rebound upon ART discontinuation. Methods We investigated a cohort of 16 patients who started ART at PHI, with treatment duration of ≥4 years and persistent aviremia (<50 HIV-1 copies/ml). The cohort was characterized in terms of viral subtype, cell-associated RNA, proviral DNA and HLA genotype. Secretion of IFN-γ, IL-2 and TNF-α by CD8 T-cells was analysed by polychromatic flowcytometry using a panel of 192 HIV-1-derived epitopes. Results This cohort is highly homogenous in terms of viral subtype: 81% clade B. We identified 44 epitope-specific responses: all patients had detectable responses to >1 epitope and the mean number of responding epitopes per patient was 3. The mean frequency of cytokines-secreting CD8 T-cells was 0.32%. CD8 T-cells secreting simultaneously IFN-γ, IL-2 and TNF-α made up for about 40% of the response and cells secreting at least 2 cytokines for about 80%, consistent with a highly polyfunctional CD8 T-cell profile. There was no difference in term of polyfunctionality when HLA restriction, or recognized viral regions and epitopes were considered. Proviral DNA was detectable in all patients but at low levels (mean = 108 copies/1 million PBMCs) while cell-associated mRNA was not detectable in 19% of patients (mean = 11 copies/1 million PBMCs when detectable). Conclusion Patients with sustained virological suppression after initiation of ART at PHI show polyfunctional CD8 T-cell and low levels of proviral DNA with an absence of residual replication in a substantial percentage of patients. The use of therapeutic vaccines in this population may promote low level of rebound viremia or control of viral replication upon ART cessation

    Interface modification of clay and graphene platelets reinforced epoxy nanocomposites: a comparative study

    Get PDF
    The interface between the matrix phase and dispersed phase of a composite plays a critical role in influencing its properties. However, the intricate mecha-nisms of interface are not fully understood, and polymer nanocomposites are no exception. This study compares the fabrication, morphology, and mechanical and thermal properties of epoxy nanocomposites tuned by clay layers (denoted as m-clay) and graphene platelets (denoted as m-GP). It was found that a chemical modification, layer expansion and dispersion of filler within the epoxy matrix resulted in an improved interface between the filler mate-rial and epoxy matrix. This was confirmed by Fourier transform infrared spectroscopy and transmission electron microscope. The enhanced interface led to improved mechanical properties (i.e. stiffness modulus, fracture toughness) and higher glass transition temperatures (Tg) compared with neat epoxy. At 4 wt% m-GP, the critical strain energy release rate G1c of neat epoxy improved by 240 % from 179.1 to 608.6 J/m2 and Tg increased from 93.7 to 106.4 �C. In contrast to m-clay, which at 4 wt%, only improved the G1c by 45 % and Tg by 7.1 %. The higher level of improvement offered by m-GP is attributed to the strong interaction of graphene sheets with epoxy because the covalent bonds between the carbon atoms of graphene sheets are much stronger than silicon-based clay

    The Capaciousness of No: Affective Refusals as Literacy Practices

    Get PDF
    © 2020 The Authors. Reading Research Quarterly published by Wiley Periodicals, Inc. on behalf of International Literacy Association The authors considered the capacious feeling that emerges from saying no to literacy practices, and the affective potential of saying no as a literacy practice. The authors highlight the affective possibilities of saying no to normative understandings of literacy, thinking with a series of vignettes in which children, young people, and teachers refused literacy practices in different ways. The authors use the term capacious to signal possibilities that are as yet unthought: a sense of broadening and opening out through enacting no. The authors examined how attention to affect ruptures humanist logics that inform normative approaches to literacy. Through attention to nonconscious, noncognitive, and transindividual bodily forces and capacities, affect deprivileges the human as the sole agent in an interaction, thus disrupting measurements of who counts as a literate subject and what counts as a literacy event. No is an affective moment. It can signal a pushback, an absence, or a silence. As a theoretical and methodological way of thinking/feeling with literacy, affect proposes problems rather than solutions, countering solution-focused research in which the resistance is to be overcome, co-opted, or solved. Affect operates as a crack or a chink, a tiny ripple, a barely perceivable gesture, that can persist and, in doing so, hold open the possibility for alternative futures

    HIV-1 DNA predicts disease progression and post-treatment virological control.

    Get PDF
    In HIV-1 infection, a population of latently infected cells facilitates viral persistence despite antiretroviral therapy (ART). With the aim of identifying individuals in whom ART might induce a period of viraemic control on stopping therapy, we hypothesised that quantification of the pool of latently infected cells in primary HIV-1 infection (PHI) would predict clinical progression and viral replication following ART. We measured HIV-1 DNA in a highly characterised randomised population of individuals with PHI. We explored associations between HIV-1 DNA and immunological and virological markers of clinical progression, including viral rebound in those interrupting therapy. In multivariable analyses, HIV-1 DNA was more predictive of disease progression than plasma viral load and, at treatment interruption, predicted time to plasma virus rebound. HIV-1 DNA may help identify individuals who could safely interrupt ART in future HIV-1 eradication trials
    corecore