173 research outputs found

    Prenatal maternal plasma DNA screening for cystic fibrosis: A computer modelling study of screening performance.

    Get PDF
    Background: Prenatal cystic fibrosis (CF) screening is currently based on determining the carrier status of both parents. We propose a new method based only on the analysis of DNA in maternal plasma. Methods: The method relies on the quantitative amplification of the CF gene to determine the percentage of DNA fragments in maternal plasma at targeted CF mutation sites that carry a CF mutation. Computer modelling was carried out to estimate the distributions of these percentages in pregnancies with and without a fetus affected with CF. This was done according to the number of DNA fragments counted and fetal fraction, using the 23 CF mutations recommended by the American College of Medical Genetics for parental carrier testing. Results: The estimated detection rate (sensitivity) is 70% (100% of those detected using the 23 mutations), the false-positive rate 0.002%, and the odds of being affected given a positive screening result 14:1, compared with 70%, 0.12%, and 1:3, respectively, with current prenatal screening based on parental carrier testing. Conclusions: Compared with current screening practice based on parental carrier testing, the proposed method would substantially reduce the number of invasive diagnostic procedures (amniocentesis or chorionic villus sampling) without reducing the CF detection rate. The expected advantages of the proposed method justify carrying out the necessary test development for use in a clinical validation study.The author(s) declared that no grants were involved in supporting this work

    Examination of the role of Mycoplasma bovis in bovine pneumonia and a mathematical model for its evaluation

    Get PDF
    The authors screened 34 large cattle herds for the presence of Mycoplasma bovis infection by examining slaughtered cattle for macroscopic lung lesions, by culturing M. bovis from lung lesions and at the same time by testing sera for the presence of antibodies against M. bovis. Among the 595 cattle examined, 33.9% had pneumonic lesions, mycoplasmas were isolated from 59.9% of pneumonic lung samples, and 10.9% of sera from those animals contained antibodies to M.bovis. In 25.2% of the cases M. bovis was isolated from lungs with no macroscopic lesions. The proportion of seropositive herds was 64.7%. The average seropositivity rate of individuals was 11.3% but in certain herds it exceeded 50%. A probability model was developed for examining the relationship among the occurrence of pneumonia, the isolation of M. bovis from the lungs and the presence of M. bovis specific antibodies in sera

    Fast and accurate mutation detection in whole genome sequences of multiple isogenic samples with IsoMut

    Get PDF
    Background: Detection of somatic mutations is one of the main goals of next generation DNA sequencing. A wide range of experimental systems are available for the study of spontaneous or environmentally induced mutagenic processes. However, most of the routinely used mutation calling algorithms are not optimised for the simultaneous analysis of multiple samples, or for non-human experimental model systems with no reliable databases of common genetic variations. Most standard tools either require numerous in-house post filtering steps with scarce documentation or take an unpractically long time to run. To overcome these problems, we designed the streamlined IsoMut tool which can be readily adapted to experimental scenarios where the goal is the identification of experimentally induced mutations in multiple isogenic samples. Methods: Using 30 isogenic samples, reliable cohorts of validated mutations were created for testing purposes. Optimal values of the filtering parameters of IsoMut were determined in a thorough and strict optimization procedure based on these test sets. Results: We show that IsoMut, when tuned correctly, decreases the false positive rate compared to conventional tools in a 30 sample experimental setup; and detects not only single nucleotide variations, but short insertions and deletions as well. IsoMut can also be run more than a hundred times faster than the most precise state of art tool, due its straightforward and easily understandable filtering algorithm. Conclusions: IsoMut has already been successfully applied in multiple recent studies to find unique, treatment induced mutations in sets of isogenic samples with very low false positive rates. These types of studies provide an important contribution to determining the mutagenic effect of environmental agents or genetic defects, and IsoMut turned out to be an invaluable tool in the analysis of such data. © 2017 The Author(s)

    Insecticide resistance status in Anopheles gambiae in southern Benin

    Get PDF
    BACKGROUND: The emergence of pyrethroid resistance in Anopheles gambiae has become a serious concern to the future success of malaria control. In Benin, the National Malaria Control Programme has recently planned to scaling up long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) for malaria prevention. It is, therefore, crucial to monitor the level and type of insecticide resistance in An. gambiae, particularly in southern Benin where reduced efficacy of insecticide-treated nets (ITNs) and IRS has previously been reported. METHODS: The protocol was based on mosquito collection during both dry and rainy seasons across forty districts selected in southern Benin. Bioassay were performed on adults collected from the field to assess the susceptibility of malaria vectors to insecticide-impregnated papers (permethrin 0.75%, delthamethrin 0.05%, DDT 4%, and bendiocarb 0.1%) following WHOPES guidelines. The species within An. gambiae complex, molecular form and presence of kdr and ace-1 mutations were determined by PCR. RESULTS: Strong resistance to permethrin and DDT was found in An. gambiae populations from southern Benin, except in Aglangandan where mosquitoes were fully susceptible (mortality 100%) to all insecticides tested. PCR showed the presence of two sub-species of An. gambiae, namely An. gambiae s.s, and Anopheles melas, with a predominance for An. gambiae s.s (98%). The molecular M form of An. gambiae was predominant in southern Benin (97%). The kdr mutation was detected in all districts at various frequency (1% to 95%) whereas the Ace-1 mutation was found at a very low frequency (<or= 5%). CONCLUSION: This study showed a widespread resistance to permethrin in An. gambiae populations from southern Benin, with a significant increase of kdr frequency compared to what was observed previously in Benin. The low frequency of Ace-1 recorded in all populations is encouraging for the use of bendiocarb as an alternative insecticide to pyrethroids for IRS in Benin

    CUT-PCR: CRISPR-mediated, ultrasensitive detection of target DNA using PCR

    Get PDF
    Circulating tumor DNA (ctDNA) has emerged as a tumor-specific biomarker for the early detection of various cancers. To date, several techniques have been devised to enrich the extremely small amounts of ctDNA present in plasma, but they are still insufficient for cancer diagnosis, especially at the early stage. Here, we developed a novel method, CUT (CRISPR-mediated, Ultrasensitive detection of Target DNA)-PCR, which uses CRISPR endonucleases to enrich and detect the extremely small amounts of tumor DNA fragments among the much more abundant wild-type DNA fragments by specifically eliminating the wild-type sequences. We computed that by using various orthologonal CRISPR endonucleases such as SpCas9 and FnCpf1, the CUT-PCR method would be applicable to 80% of known cancer-linked substitution mutations registered in the COSMIC database. We further verified that CUT-PCR together with targeted deep sequencing enables detection of a broad range of oncogenes with high sensitivity (&lt;0.01%) and accuracy, which is superior to conventional targeted deep sequencing. In the end, we successfully applied CUT-PCR to detect sequences with oncogenic mutations in the ctDNA of colorectal cancer patients&apos; blood, suggesting that our technique could be adopted for diagnosing various types of cancer at early stages

    Ordering of mutations in preinvasive disease stages of esophageal carcinogenesis.

    Get PDF
    Cancer genome sequencing studies have identified numerous driver genes, but the relative timing of mutations in carcinogenesis remains unclear. The gradual progression from premalignant Barrett's esophagus to esophageal adenocarcinoma (EAC) provides an ideal model to study the ordering of somatic mutations. We identified recurrently mutated genes and assessed clonal structure using whole-genome sequencing and amplicon resequencing of 112 EACs. We next screened a cohort of 109 biopsies from 2 key transition points in the development of malignancy: benign metaplastic never-dysplastic Barrett's esophagus (NDBE; n=66) and high-grade dysplasia (HGD; n=43). Unexpectedly, the majority of recurrently mutated genes in EAC were also mutated in NDBE. Only TP53 and SMAD4 mutations occurred in a stage-specific manner, confined to HGD and EAC, respectively. Finally, we applied this knowledge to identify high-risk Barrett's esophagus in a new non-endoscopic test. In conclusion, mutations in EAC driver genes generally occur exceptionally early in disease development with profound implications for diagnostic and therapeutic strategies

    Telomerase promoter mutations in cancer: an emerging molecular biomarker?

    Get PDF
    João Vinagre, Vasco Pinto and Ricardo Celestino contributed equally to the manuscript.Cell immortalization has been considered for a long time as a classic hallmark of cancer cells. Besides telomerase reactivation, such immortalization could be due to telomere maintenance through the “alternative mechanism of telomere lengthening” (ALT) but the mechanisms underlying both forms of reactivation remained elusive. Mutations in the coding region of telomerase gene are very rare in the cancer setting, despite being associated with some degenerative diseases. Recently, mutations in telomerase (TERT) gene promoter were found in sporadic and familial melanoma and subsequently in several cancer models, notably in gliomas, thyroid cancer and bladder cancer. The importance of these findings has been reinforced by the association of TERT mutations in some cancer types with tumour aggressiveness and patient survival. In the first part of this review, we summarize the data on the biology of telomeres and telomerase, available methodological approaches and non-neoplastic diseases associated with telomere dysfunction. In the second part, we review the information on telomerase expression and genetic alterations in the most relevant types of cancer (skin, thyroid, bladder and central nervous system) on record, and discuss the value of telomerase as a new biomarker with impact on the prognosis and survival of the patients and as a putative therapeutic target
    • 

    corecore