8,389 research outputs found

    Tumor hypoxia and reoxygenation: the yin and yang for radiotherapy.

    Get PDF
    Tumor hypoxia, a common feature occurring in nearly all human solid tumors is a major contributing factor for failures of anticancer therapies. Because ionizing radiation depends heavily on the presence of molecular oxygen to produce cytotoxic effect, the negative impact of tumor hypoxia had long been recognized. In this review, we will highlight some of the past attempts to overcome tumor hypoxia including hypoxic radiosensitizers and hypoxia-selective cytotoxin. Although they were (still are) a very clever idea, they lacked clinical efficacy largely because of ‘reoxygenation’ phenomenon occurring in the conventional low dose hyperfractionation radiotherapy prevented proper activation of these compounds. Recent meta-analysis and imaging studies do however indicate that there may be a significant clinical benefit in lowering the locoregional failures by using these compounds. Latest technological advancement in radiotherapy has allowed to deliver high doses of radiation conformally to the tumor volume. Although this technology has brought superb clinical responses for many types of cancer, recent modeling studies have predicted that tumor hypoxia is even more serious because ‘reoxygenation’ is low thereby leaving a large portion of hypoxic tumor cells behind. Wouldn’t it be then reasonable to combine hypoxic radiosensitizers and/or hypoxia-selective cytotoxin with the latest radiotherapy? We will provide some preclinical and clinical evidence to support this idea hoping to revamp an enthusiasm for hypoxic radiosensitizers or hypoxia-selective cytotoxins as an adjunct therapy for radiotherapy. © 2016. The Korean Society for Radiation Oncology.11Yscopu

    Can Ocean Thermal Energy Conversion and Seawater Utilisation Assist Small Island Developing States? A Case Study of Kiribati, Pacific Islands Region

    Get PDF
    The deployment of a land-based Ocean Thermal Energy Conversion (OTEC) plant in South Tarawa, Kiribati, Pacific Islands Region, in 2020/2021, represents a major technical achievement, alongside an international development opportunity. Pacific Small Island Developing States (PSIDS) are archipelago nations with small land areas and large oceanic exclusive economic zones. Geographical isolation and large transport distances make economic development a challenge. A lack of affordable and reliable energy in many PSIDS is a development inhibitor. PSIDS are situated within the areas of highest ocean thermal potential in the world. Temperature differences between surface and 1 km depth waters, are in excess of 24°C. Regional geology and tectonics allow access to deeper, colder, waters within few kilometres of many shorelines, and close to market. Seawater Utilization technologies can catalyse varied industrial development (e.g., fresh water/aquaculture/agriculture/mineral salts). The KRISO (Korean Research Institute of Ships and Ocean Engineering)-Government of Kiribati OTEC partnership is already 7 years old (2013–2020) and has involved extensive negotiations, awareness raising programmes, and inclusive collaboration. The project will test OTEC technologies and explore a range development opportunities for Kiribati. The programme could become a role model for the application of the concept of ‘Interconnected Geoscience’

    Electrical current suppression in Pd-doped vanadium pentoxide nanowires caused by reduction in PdO due to hydrogen exposure

    Get PDF
    Pd nanoparticle-doped vanadium pentoxide nanowires (Pd-VONs) were synthesized. Electrical current suppression was observed when the Pd-VON was exposed to hydrogen gas, which cannot be explained by the work function changes mentioned in previous report such as Pd-doped carbon nanotubes and SnO 2 nanowires. Using the x-ray photoelectron spectroscopy, we found that the reduction in PdO due to hydrogen exposure plays an important role in the current suppression of the Pd-VON.open4

    Percolative phase separation induced by nonuniformly distributed excess oxygens

    Full text link
    The zero-field 139^{139}La and 55^{55}Mn nuclear magnetic resonances were studied in La0.8Ca0.2MnO3+δ\rm La_{0.8}Ca_{0.2}MnO_{3+\delta} with different oxygen stoichiometry δ\delta. The signal intensity, peak frequency and line broadening of the 139^{139}La NMR spectrum show that excess oxygens have a tendency to concentrate and establish local ferromagnetic ordering around themselves. These connect the previously existed ferromagnetic clusters embedded in the antiferromagnetic host, resulting in percolative conduction paths. This phase separation is not a charge segregation type, but a electroneutral type. The magnetoresistance peak at the temperature where percolative paths start to form provides a direct evidence that phase separation is one source of colossal magnetoresistance effect.Comment: 4 pages, 5 figure

    Exact soluble two-dimensional charged wormhole

    Full text link
    We present an exactly soluble charged wormhole model in two dimensions by adding infalling chiral fermions on the static wormhole. The infalling energy due to the infalling charged matter requires the classical back reaction of the geometry, which is solved by taking into account of the nontrivial nonchiral exotic energy. Finally, we obtain the exact expression for the size of the throat depending on the total amount of the infalling net energy and discuss the interesting transition from the AdS spacetime to the wormhole geometry.Comment: 8 pages, no figure

    Amplitude Damping for single-qubit System with single-qubit mixed-state Environment

    Full text link
    We study a generalized amplitude damping channel when environment is initially in the single-qubit mixed state. Representing the affine transformation of the generalized amplitude damping by a three-dimensional volume, we plot explicitly the volume occupied by the channels simulatable by a single-qubit mixed-state environment. As expected, this volume is embedded in the total volume by the channels which is simulated by two-qubit enviroment. The volume ratio is approximately 0.08 which is much smaller than 3/8, the volume ratio for generalized depolarizing channels.Comment: 13 pages, 2 figures incluided V2: homepage address is included in reference V3: version to appear in J. Phys. A: Mathematical and Theoretica

    Artbotics: Combining Art and Robotics to Broaden Participation

    Get PDF
    Abstract The Artbotics program is a collaboration between artists and computer scientists which uses robotics technologies to teach computer science to undergraduates and high school students. Project-based courses culminate in public exhibitions at a local museum. This paper describes the curriculum developed for the course, the technology used and lessons learned

    First-principles study of interstitial diffusion of oxygen in nickel chromium binary alloy

    Get PDF
    The first-principles calculations of the diffusion processes of oxygen in pure Ni and Ni-Cr binary alloy are conducted to understand the oxidation behavior of nickel base alloys. The cohesive energy, insertion energy of atomic oxygen, and vacancy formation energy in nickel are calculated and compared with experimental data. The activation energies of oxygen are also calculated. The results show agreement with previous work for the oxygen diffusion in pure nickel. However, the calculated activation energy for the diffusion of oxygen in Ni-Cr binary alloy showed lower values than that in nickel because of the limitations of the current calculation model.open3
    corecore