34 research outputs found

    A 340 kDa hyaluronic acid secreted by human vascular smooth muscle cells regulates their proliferation and migration

    Get PDF
    The formation of atherosclerotic lesions is characterized by invasion of vascular smooth muscle cells (VSMC) into the tunica intima of the arterial wall and subsequently by increased proliferation of VSMC, a process apparently restricted to the intimal layer of blood vessels. Both events are preceded by the pathological overexpression of several growth factors, such as platelet-derived growth factor (PDGF) which is a potent mitogen for VSMC and can induce their chemotaxis. PDGF is generally not expressed in the normal artery but it is upregulated in atherosclerotic lesions. We have previously shown that PDGF-BB specifically stimulates proliferating VSMC to secrete a 340 kDa hyaluronic acid (HA-340). Here, we present evidence regarding the biological functions of this glycan. We observed that HA-340 inhibited the PDGF-induced proliferation of human VSMC in a dosedependent manner and enhanced the PDGF-dependent invasion of VSMC through a basement membrane barrier. These effects were abolished following treatment of HA-340 with hyaluronidase. The effect of HA-340 on the PDGF-dependent invasion of VSMC coincided with increased secretion of the 72-kDa type IV collagenase by VSMC and was completely blocked by GM6001, a hydroxamic acid inhibitor of matrix metalloproteinases. HA-340 did not exert any chemotactic potency, nor did it affect chemotaxis of VSMC along a PDGF gradient. In human atheromatic aortas, we found that HA-340 is expressed with a negative concentration gradient from the tunica media to the tunica intima and the atheromatic plaque. Our findings suggest that HA-340 may be linked to the pathogenesis of atherosclerosis, by modulating VSMC proliferation and invasio

    J Invest Dermatol

    Get PDF
    Acne vulgaris is a skin disorder of the sebaceous follicles, involving hyperkeratinization and perifollicular inflammation. Matrix metalloproteinases (MMP) have a predominant role in inflammatory matrix remodeling and hyperproliferative skin disorders. We investigated the expression of MMP and tissue inhibitors of MMP (TIMP) in facial sebum specimens from acne patients, before and after treatment with isotretinoin. Gelatin zymography and Western-blot analysis revealed that sebum contains proMMP-9, which was decreased following per os or topical treatment with isotretinoin and in parallel to the clinical improvement of acne. Sebum also contains MMP-1, MMP-13, TIMP-1, and TIMP-2, as assessed by ELISA and western blot, but only MMP-13 was decreased following treatment with isotretinoin. The origin of MMP and TIMP in sebum is attributed to keratinocytes and sebocytes, since we found that HaCaT keratinocytes in culture secrete proMMP-2, proMMP-9, MMP-1, MMP-13, TIMP-1, and TIMP-2. SZ95 sebocytes in culture secreted proMMP-2 and proMMP-9, which was also confirmed by microarray analysis. Isotretinoin inhibited the arachidonic acid-induced secretion and mRNA expression of proMMP-2 and -9 in both cell types and of MMP-13 in HaCaT keratinocytes. These data indicate that MMP and TIMP of epithelial origin may be involved in acne pathogenesis, and that isotretinoin-induced reduction in MMP-9 and -13 may contribute to the therapeutic effects of the agent in acne

    DMF inhibits PDGF-BB induced airway smooth muscle cell proliferation through induction of heme-oxygenase-1

    Get PDF
    Airway wall remodelling is an important pathology of asthma. Growth factor induced airway smooth muscle cell (ASMC) proliferation is thought to be the major cause of airway wall thickening in asthma. Earlier we reported that Dimethylfumarate (DMF) inhibits platelet-derived growth factor (PDGF)-BB induced mitogen and stress activated kinase (MSK)-1 and CREB activity as well as IL-6 secretion by ASMC. In addition, DMF altered intracellular glutathione levels and thereby reduced proliferation of other cell types

    GenCLiP: a software program for clustering gene lists by literature profiling and constructing gene co-occurrence networks related to custom keywords

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Biomedical researchers often want to explore pathogenesis and pathways regulated by abnormally expressed genes, such as those identified by microarray analyses. Literature mining is an important way to assist in this task. Many literature mining tools are now available. However, few of them allows the user to make manual adjustments to zero in on what he/she wants to know in particular.</p> <p>Results</p> <p>We present our software program, GenCLiP (Gene Cluster with Literature Profiles), which is based on the methods presented by Chaussabel and Sher (<it>Genome Biol </it>2002, 3(10):RESEARCH0055) that search gene lists to identify functional clusters of genes based on up-to-date literature profiling. Four features were added to this previously described method: the ability to 1) manually curate keywords extracted from the literature, 2) search genes and gene co-occurrence networks related to custom keywords, 3) compare analyzed gene results with negative and positive controls generated by GenCLiP, and 4) calculate probabilities that the resulting genes and gene networks are randomly related. In this paper, we show with a set of differentially expressed genes between keloids and normal control, how implementation of functions in GenCLiP successfully identified keywords related to the pathogenesis of keloids and unknown gene pathways involved in the pathogenesis of keloids.</p> <p>Conclusion</p> <p>With regard to the identification of disease-susceptibility genes, GenCLiP allows one to quickly acquire a primary pathogenesis profile and identify pathways involving abnormally expressed genes not previously associated with the disease.</p

    Matrix metalloproteinases 2 and 9 (gelatinases A and B) expression in malignant mesothelioma and benign pleura

    Get PDF
    Matrix metalloproteinases (MMPs), in particular the gelatinases (MMP-2 and -9), play a significant role in tumour invasion and angiogenesis. The expression and activities of MMPs have not been characterised in malignant mesothelioma (MM) tumour samples. In a prospective study, gelatinase activity was evaluated in homogenised supernatants of snap frozen MM (n = 35), inflamed pleura (IP, n = 12) and uninflammed pleura (UP, n = 14) tissue specimens by semiquantitative gelatin zymography. Matrix metalloproteinases were correlated with clinicopathological factors and with survival using Kaplan-Meier and Cox proportional hazard models. In MM, pro- and active MMP-2 levels were significantly greater than for MMP-9 (P = 0.006, P<0.001). Active MMP-2 was significantly greater in MM than in UP (P=0.04). MMP-2 activity was equivalent between IP and MM, but both pro- and active MMP-9 activities were greater in IP (P=0.02, P=0.009). While there were trends towards poor survival with increasing total and pro-MMP-2 activity (P=0.08) in univariate analysis, they were both independent poor prognostic factors in multivariate analysis in conjunction with weight loss (pro-MMP-2 P = 0.03, total MMP-2 P = 0.04). Total and pro-MMP-2 also contributed to the Cancer and Leukemia Group B prognostic groups. MMP-9 activities were not prognostic. Matrix metalloproteinases, and in particular MMP-2, the most abundant gelatinase, may play an important role in MM tumour growth and metastasis. Agents that reduce MMP synthesis and/or activity may have a role to play in the management of MM. © 2003 Cancer Research UK

    Hypoxia regulates human lung fibroblast proliferation via p53-dependent and -independent pathways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hypoxia induces the proliferation of lung fibroblasts in vivo and in vitro. However, the subcellular interactions between hypoxia and expression of tumor suppressor p53 and cyclin-dependent kinase inhibitors p21 and p27 remain unclear.</p> <p>Methods</p> <p>Normal human lung fibroblasts (NHLF) were cultured in a hypoxic chamber or exposed to desferroxamine (DFX). DNA synthesis was measured using bromodeoxyuridine incorporation, and expression of p53, p21 and p27 was measured using real-time RT-PCR and Western blot analysis.</p> <p>Results</p> <p>DNA synthesis was increased by moderate hypoxia (2% oxygen) but was decreased by severe hypoxia (0.1% oxygen) and DFX. Moderate hypoxia decreased p21 synthesis without affecting p53 synthesis, whereas severe hypoxia and DFX increased synthesis of both p21 and p53. p27 protein expression was decreased by severe hypoxia and DFX. Gene silencing of p21 and p27 promoted DNA synthesis at ambient oxygen concentrations. p21 and p53 gene silencing lessened the decrease in DNA synthesis due to severe hypoxia or DFX exposure. p21 gene silencing prevented increased DNA synthesis in moderate hypoxia. p27 protein expression was significantly increased by p53 gene silencing, and was decreased by wild-type p53 gene transfection.</p> <p>Conclusion</p> <p>These results indicate that in NHLF, severe hypoxia leads to cell cycle arrest via the p53-p21 pathway, but that moderate hypoxia enhances cell proliferation via the p21 pathway in a p53-independent manner. In addition, our results suggest that p27 may be involved in compensating for p53 in cultured NHLF proliferation.</p

    Muscarinic receptors and their antagonists in COPD: anti-inflammatory and antiremodeling effects

    Get PDF
    Muscarinic receptors are expressed by most cell types and mediate cellular signaling of their natural ligand acetylcholine. Thereby, they control numerous central and peripheral physiological organ responses to neuronal activity. In the human lung, muscarinic receptors are predominantly expressed by smooth muscle cells, epithelial cells, and fibroblasts. Antimuscarinic agents are used for the treatment of chronic obstructive pulmonary disease and to a lesser extent for asthma. They are primarily used as bronchodilators, but it is now accepted that they are also associated with anti-inflammatory, antiproliferative, and antiremodeling effects. Remodeling of the small airways is a major pathology in COPD and impairs lung function through changes of the extracellular matrix. Glycosaminoglycans, particularly hyaluronic acid, and matrix metalloproteases are among extracellular matrix molecules that have been associated with tissue inflammation and remodeling in lung diseases, including chronic obstructive pulmonary disease and asthma. Since muscarinic receptors have been shown to influence the homeostasis of glycosaminoglycans and matrix metalloproteases, these molecules may be proved valuable endpoint targets in clinical studies for the pharmacological exploitation of the anti-inflammatory and antiremodeling effects of muscarinic inhibitors in the treatment of chronic obstructive pulmonary disease and asthma
    corecore