85 research outputs found
Apoptosis screening of human chromosome 21 proteins reveals novel cell death regulators
The functional analysis of chromosome 21 (Chr21) proteins is of great medical relevance. This refers, in particular, to the trisomy of human Chr21, which results in Down’s syndrome, a complex developmental and neurodegenerative disease. In a previous study we analyzed 89 human Chr21 genes for the subcellular localization of their encoded proteins using a transfected-cell array technique. In the present study, the results of the follow-up investigation are presented in which 52 human Chr21 genes were over-expressed in HEK cells using the transfected-cell array platform, and the effect of this protein over-expression on the induction of apoptosis has been analyzed. We found that the over-expression of two Chr21 proteins (claudin-14 and -8) induced cell death independent of the classic caspase-mediated apoptosis. Our results strongly suggest the functional involvement of claudins in the control of the cell cycle and regulation of the cell death induction mechanism
Identifier mapping performance for integrating transcriptomics and proteomics experimental results
Background\ud
Studies integrating transcriptomic data with proteomic data can illuminate the proteome more clearly than either separately. Integromic studies can deepen understanding of the dynamic complex regulatory relationship between the transcriptome and the proteome. Integrating these data dictates a reliable mapping between the identifier nomenclature resultant from the two high-throughput platforms. However, this kind of analysis is well known to be hampered by lack of standardization of identifier nomenclature among proteins, genes, and microarray probe sets. Therefore data integration may also play a role in critiquing the fallible gene identifications that both platforms emit.\ud
\ud
Results\ud
We compared three freely available internet-based identifier mapping resources for mapping UniProt accessions (ACCs) to Affymetrix probesets identifications (IDs): DAVID, EnVision, and NetAffx. Liquid chromatography-tandem mass spectrometry analyses of 91 endometrial cancer and 7 noncancer samples generated 11,879 distinct ACCs. For each ACC, we compared the retrieval sets of probeset IDs from each mapping resource. We confirmed a high level of discrepancy among the mapping resources. On the same samples, mRNA expression was available. Therefore, to evaluate the quality of each ACC-to-probeset match, we calculated proteome-transcriptome correlations, and compared the resources presuming that better mapping of identifiers should generate a higher proportion of mapped pairs with strong inter-platform correlations. A mixture model for the correlations fitted well and supported regression analysis, providing a window into the performance of the mapping resources. The resources have added and dropped matches over two years, but their overall performance has not changed.\ud
\ud
Conclusions\ud
The methods presented here serve to achieve concrete context-specific insight, to support well-informed decisions in choosing an ID mapping strategy for "omic" data merging
Ten simple rules for making training materials FAIR
Author summary: Everything we do today is becoming more and more reliant on the use of computers. The field of biology is no exception; but most biologists receive little or no formal preparation for the increasingly computational aspects of their discipline. In consequence, informal training courses are often needed to plug the gaps; and the demand for such training is growing worldwide. To meet this demand, some training programs are being expanded, and new ones are being developed. Key to both scenarios is the creation of new course materials. Rather than starting from scratch, however, it’s sometimes possible to repurpose materials that already exist. Yet finding suitable materials online can be difficult: They’re often widely scattered across the internet or hidden in their home institutions, with no systematic way to find them. This is a common problem for all digital objects. The scientific community has attempted to address this issue by developing a set of rules (which have been called the Findable, Accessible, Interoperable and Reusable [FAIR] principles) to make such objects more findable and reusable. Here, we show how to apply these rules to help make training materials easier to find, (re)use, and adapt, for the benefit of all
Distinct Molecular Evolutionary Mechanisms Underlie the Functional Diversification of the Wnt and TGFβ Signaling Pathways
The canonical Wnt pathway is one of the oldest and most functionally diverse of animal intercellular signaling pathways. Though much is known about loss-of-function phenotypes for Wnt pathway components in several model organisms, the question of how this pathway achieved its current repertoire of functions has not been addressed. Our phylogenetic analyses of 11 multigene families from five species belonging to distinct phyla, as well as additional analyses employing the 12 Drosophila genomes, suggest frequent gene duplications affecting ligands and receptors as well as co-evolution of new ligand–receptor pairs likely facilitated the expansion of this pathway’s capabilities. Further, several examples of recent gene loss are visible in Drosophila when compared to family members in other phyla. By comparison the TGFβ signaling pathway is characterized by ancient gene duplications of ligands, receptors, and signal transducers with recent duplication events restricted to the vertebrate lineage. Overall, the data suggest that two distinct molecular evolutionary mechanisms can create a functionally diverse developmental signaling pathway. These are the recent dynamic generation of new genes and ligand–receptor interactions as seen in the Wnt pathway and the conservative adaptation of ancient pre-existing genes to new roles as seen in the TGFβ pathway. From a practical perspective, the former mechanism limits the investigator’s ability to transfer knowledge of specific pathway functions across species while the latter facilitates knowledge transfer
Drug-induced senescence bystander proliferation in prostate cancer cells in vitro and in vivo
Senescence is a distinct cellular response induced by DNA-damaging agents and other sublethal stressors and may provide novel benefits in cancer therapy. However, in an ageing model, senescent fibroblasts were found to stimulate the proliferation of cocultured cells. To address whether senescence induction in cancer cells using chemotherapy induces similar effects, we used GFP-labelled prostate cancer cell lines and monitored their proliferation in the presence of proliferating or doxorubicin-induced senescent cancer cells in vitro and in vivo. Here, we show that the presence of senescent cancer cells increased the proliferation of cocultured cells in vitro through paracrine signalling factors, but this proliferative effect was significantly less than that seen with senescent fibroblasts. In vivo, senescent cancer cells failed to increase the establishment, growth or proliferation of LNCaP and DU145 xenografts in nude mice. Senescent cells persisted as long as 5 weeks in tumours. Our results demonstrate that although drug-induced senescent cancer cells stimulate the proliferation of bystander cells in vitro, this does not significantly alter the growth of tumours in vivo. Coupled with clinical observations, these data suggest that the proliferative bystander effects of senescent cancer cells are negligible and support the further development of senescence induction as therapy
iAnn: an event sharing platform for the life sciences
Summary: We present iAnn, an open source community-driven platform for dissemination of life science events, such as courses, conferences and workshops. iAnn allows automatic visualisation and integration of customised event reports. A central repository lies at the core of the platform: curators add submitted events, and these are subsequently accessed via web services. Thus, once an iAnn widget is incorporated into a website, it permanently shows timely relevant information as if it were native to the remote site. At the same time, announcements submitted to the repository are automatically disseminated to all portals that query the system. To facilitate the visualization of announcements, iAnn provides powerful filtering options and views, integrated in Google Maps and Google Calendar. All iAnn widgets are freely available. Availability: http://iann.pro/iannviewer Contact: [email protected]
Symposium on the Scottish labour market
In the post-war period, up to the late 1960s, Britain enjoyed a modicum of unemployment and government policies which were geared to producing Full Employment were considered a success. It was simple - boost demand and more people would find work. But the mid 1970s the economic regency enjoyed by those advocating demand sided policies fell into disrepute as the OPEC nations raised prices dramatically and brought in a new era of both rising prices and unemployment. The laws of economics, which previously had viewed policy decisions as the choice between lower unemployment and higher inflation were now redundant. Both unemployment and inflation were moving in the same direction. The era of stagflation had begun
Recommended from our members
Transcriptome and genome sequencing uncovers functional variation in humans
Summary Genome sequencing projects are discovering millions of genetic variants in humans, and interpretation of their functional effects is essential for understanding the genetic basis of variation in human traits. Here we report sequencing and deep analysis of mRNA and miRNA from lymphoblastoid cell lines of 462 individuals from the 1000 Genomes Project – the first uniformly processed RNA-seq data from multiple human populations with high-quality genome sequences. We discovered extremely widespread genetic variation affecting regulation of the majority of genes, with transcript structure and expression level variation being equally common but genetically largely independent. Our characterization of causal regulatory variation sheds light on cellular mechanisms of regulatory and loss-of-function variation, and allowed us to infer putative causal variants for dozens of disease-associated loci. Altogether, this study provides a deep understanding of the cellular mechanisms of transcriptome variation and of the landscape of functional variants in the human genome
Impairment of circulating endothelial progenitors in Down syndrome
<p>Abstract</p> <p>Background</p> <p>Pathological angiogenesis represents a critical issue in the progression of many diseases. Down syndrome is postulated to be a systemic anti-angiogenesis disease model, possibly due to increased expression of anti-angiogenic regulators on chromosome 21. The aim of our study was to elucidate some features of circulating endothelial progenitor cells in the context of this syndrome.</p> <p>Methods</p> <p>Circulating endothelial progenitors of Down syndrome affected individuals were isolated, <it>in vitro </it>cultured and analyzed by confocal and transmission electron microscopy. ELISA was performed to measure SDF-1α plasma levels in Down syndrome and euploid individuals. Moreover, qRT-PCR was used to quantify expression levels of <it>CXCL12 </it>gene and of its receptor in progenitor cells. The functional impairment of Down progenitors was evaluated through their susceptibility to hydroperoxide-induced oxidative stress with BODIPY assay and the major vulnerability to the infection with human pathogens. The differential expression of crucial genes in Down progenitor cells was evaluated by microarray analysis.</p> <p>Results</p> <p>We detected a marked decrease of progenitors' number in young Down individuals compared to euploid, cell size increase and some major detrimental morphological changes. Moreover, Down syndrome patients also exhibited decreased SDF-1α plasma levels and their progenitors had a reduced expression of SDF-1α encoding gene and of its membrane receptor. We further demonstrated that their progenitor cells are more susceptible to hydroperoxide-induced oxidative stress and infection with Bartonella henselae. Further, we observed that most of the differentially expressed genes belong to angiogenesis, immune response and inflammation pathways, and that infected progenitors with trisomy 21 have a more pronounced perturbation of immune response genes than infected euploid cells.</p> <p>Conclusions</p> <p>Our data provide evidences for a reduced number and altered morphology of endothelial progenitor cells in Down syndrome, also showing the higher susceptibility to oxidative stress and to pathogen infection compared to euploid cells, thereby confirming the angiogenesis and immune response deficit observed in Down syndrome individuals.</p
- …