66 research outputs found

    Observing the Impact of Calbuco Volcanic Aerosols on South Polar Ozone Depletion in 2015

    Get PDF
    The Southern Hemisphere Antarctic stratosphere experienced two noteworthy events in 2015: a significant injection of sulfur from the Calbuco volcanic eruption in Chile in April and a record-large Antarctic ozone hole in October and November. Here we quantify Calbuco's influence on stratospheric ozone depletion in austral spring 2015 using observations and an Earth system model. We analyze ozonesondes, as well as data from the Microwave Limb Sounder. We employ the Community Earth System Model, version 1, with the Whole Atmosphere Community Climate Model (WACCM) in a specified dynamics setup, which includes calculations of volcanic effects. The Cloud-Aerosol Lidar with Orthogonal Polarization data indicate enhanced volcanic liquid sulfate 532 nm backscatter values as far poleward as 68°S during October and November (in broad agreement with WACCM). Comparison of the location of the enhanced aerosols to ozone data supports the view that aerosols played a major role in increasing the ozone hole size, especially at pressure levels between 150 and 100 hPa. Ozonesonde vertical ozone profiles from the sites of Syowa, South Pole, and Neumayer display the lowest individual October or November measurements at 150 hPa since the 1991 Mount Pinatubo eruption period, with Davis showing similarly low values, but no available 1990 data. The analysis suggests that under the cold conditions ideal for ozone depletion, stratospheric volcanic aerosol particles from the moderate-magnitude eruption of Calbuco in 2015 greatly enhanced austral ozone depletion, particularly at 55–68°S, where liquid binary sulfate aerosols have a large influence on ozone concentrations

    Observations of the Antarctic ozone hole from 2003-2010

    Get PDF
    Póster presentado en: EGU General Assembly 2011 celebrada del 3 al 8 de abril en Viena, Austria.The Global Atmosphere Watch of WMO includes several stations in Antarctica that keep a close eye on the ozone layer during the ozone hole season. Observations made during the ozone holes from 2003 to 2010 will be compared to each other and interpreted in light of the meteorological conditions. Satellite observations will be used to get a more general picture of the size and depth of the ozone hole and will also be used to calculate various metrics for ozone hole severity. In 2003, 2005 and 2006, the ozone hole was relatively large with more ozone loss than normal. This is in particular the case for 2006, which by most ozone hole metrics was the most severe ozone holeon record. On the other hand, the ozone holes of 2004, 2007 and 2010 were less severe than normal, and only the very special ozone hole of 2002 had less ozone depletion when one regards the ozone holes of the last decade. The interannual variability will be discussed with the help of meteorological data, such as temperature conditions, possibility for polar stratospheric clouds, vortex shape and vortex longevity. Observations will also be compared to 3-D chemical transport model calculations

    Measurements of Spectral Snow Albedo at Neumayer, Antarctica

    Get PDF
    Spectral albedo in high resolution, from 290 to 1050 nm, has been measured at Neumayer, Antarctica, (70°39' S, 8°15' W) during the austral summer 2003/2004. At 500 nm, the spectral albedo nearly reaches unity, with slightly lower values below and above 500 nm. Above 600 nm, the spectral albedo decreases to values between 0.45 and 0.75 at 1000 nm. For one cloudless case an albedo up to 1.01 at 500 nm could be determined. This can be explained by the larger directional component of the snow reflectivity for direct incidence, combined with a slightly mislevelled sensor and the snow surface not being perfectly horizontal. A possible explanation for an observed decline in albedo is an increase in snow grain size. The theoretically predicted increase in albedo with increasing solar zenith angle (SZA) could not be observed. This is explained by the small range of SZA during albedo measurements, combined with the effect of changing snow conditions outweighing the effect of changing SZA. The measured spectral albedo serves as input for radiative transfer models, describing radiation conditions in Antarctica

    Daily to intraseasonal oscillations at Antarctic research station Neumayer

    Get PDF
    High temporal resolution (three hours) records of temperature, wind speed and sea level pressure recorded at Antarctic research station Neumayer (708S, 88W) during 1982–2011 are analysed to identify oscillations from daily to intraseasonal timescales. The diurnal cycle dominates the three-hourly time series of temperature during the Antarctic summer and is almost absent during winter. In contrast, the three-hourly time series of wind speed and sea level pressure show a weak diurnal cycle. The dominant pattern of the intraseasonal variability of these quantities, which captures the out-of-phase variation of temperature and wind speed with sea level pressure, shows enhanced variability at timescales of , 40 days and , 80 days, respectively. Correlation and composite analysis reveal that these oscillations may be related to tropical intraseasonal oscillations via large-scale eastward propagating atmospheric circulation wave-trains. The second pattern of intraseasonal variability, which captures in-phase variations of temperature, wind and sea level pressure, shows enhanced variability at timescales of , 35, , 60 and , 120 days. These oscillations are attributed to the Southern Annular Mode/Antarctic Oscillation (SAM/AAO) which shows enhanced variability at these timescales. We argue that intraseasonal oscillations of tropical climate and SAM/AAO are related to distinct patterns of climate variables measured at Neumayer

    Compilation of ozonesonde profiles from the Antarctic Georg-Forster-Station from 1985 to 1992

    No full text
    On 22 May 1985 the first balloon-borne ozonesonde was successfully launched by the staff of Georg-Forster-Station (70°46' S, 11°41' E). The subsequent weekly ozone soundings mark the beginning of a continuous investigation of the vertical ozone distribution in the southern hemisphere by Germany. <br><br> The measurements began the year the ozone hole was discovered. They significantly contribute to other measurements made prior to and following 1985 at other stations. The regular ozone soundings from 1985 until 1992 are a valuable reference data set since the chemical ozone loss became a significant feature in the southern polar stratosphere. <br><br> The balloon-borne soundings were performed at the upper air sounding facility of the neighbouring station Novolazarevskaya, just 2 km from Georg-Forster-Station. Until 1992, ozone soundings were taken without interruption. Thereafter, the ozone sounding program was moved to Neumayer-Station (70°39' S, 8°15' W) 750 km further west
    • …
    corecore