121 research outputs found

    Protective effects of curcumin against gamma radiation-induced ileal mucosal damage

    Get PDF
    The major objective of this study was to test curcumin as a potential radioprotectant for the ileum goblet cells of the rat. Wistar albino rats were used in the study. Group A was the control group and group B was the single dose radiation group. Group C was the two dose radiation group (4 days interval). The rats in groups D and E were given a daily dose of 100 mg/kg of curcumin for 14 and 18 days, respectively. During the curcumin administration period, the rats in group D were exposed to abdominal area gamma (γ)-ray dose of 5 Gy on the 10th day and group E was exposed to same dose radiation on the 10th and 14th day. Irradiation and treatment groups were decapitated on the 4th day after exposure to single or two-dose irradiation and ileum tissues were removed for light and electron microscopic investigation. Single or two dose 5 Gy γ-irradiation caused a marked intestinal mucosal injury in rats on the 4th day. Radiation produced increases in the number of goblet cells. Curcumin appears to have protective effects against radiation-induced damage, suggesting that clinical transfer is feasible

    Antinociceptive activity of Mentha piperita leaf aqueous extract in mice

    Get PDF
    Mentha piperita L. (Labiatae) is an herbaceous plant, used in folk medicine for the treatment of several medical disorders.In the present study, the aqueous extract of Mentha piperita leaf, at the i.p doses 200 and 400 mg/kg, showed significant analgesic effects against both acetic acid-induced writhing and hot plate-induced thermal stimulation in mice, with protection values of 51.79% and 20.21% respectively. On the contrary, the Mentha piperita leaf aqueous extract did not exhibit anti-inflammatory activity against carrageenan induced paw oedema.These findings indicate that Mentha piperita has a potential analgesic effect that may possibly have mediated centrally and peripherally, as well as providing a pharmacological evidence for its traditional use as a pain reliever

    Pharmacological regulation of neutrophil activity and apoptosis: Contribution to new strategy for modulation of inflammatory processes

    Get PDF
    Novel strategies of antiinflammatory therapy are based upon pharmacological agents capable to enhance the resolution – i.e. the termination of the beneficial inflammation before it may turn into an adverse chronic stage. In contrast to the current therapy, which antagonises the formation of proinflammatory mediators, the “proresolving” therapy promotes natural antiinflammatory processes. It is likely that several drugs and phytochemicals would act in this way, but this point has not been investigated and thus might be totally overlooked. In this paper, effects of curcumin (diferuloylmethane) were analysed, considering the ability of this natural compound to affect resolution of inflammation through modulation of its important inputs – activity and apoptosis of neutrophils. The presented data indicate that, besides its well-known ability to suppress mechanisms engaged at the onset and progression of inflammation, curcumin could support resolution of inflammation through decreased activity and enhanced apoptosis of neutrophils. This substance decreased the formation of oxidants in neutrophils, both under in vitro conditions and after oral administration to arthritic rats. Moreover, curcumin accelerated spontaneous apoptosis of neutrophils, as indicated by increased externalisation of phosphatidylserine, by intercalation of propidium iodide and by enhanced activity of the executioner caspase-3

    Curcumin-Arteether Combination Therapy of Plasmodium berghei-Infected Mice Prevents Recrudescence Through Immunomodulation

    Get PDF
    Earlier studies in this laboratory have shown the potential of artemisinin-curcumin combination therapy in experimental malaria. In a parasite recrudescence model in mice infected with Plasmodium berghei (ANKA), a single dose of alpha,beta-arteether (ART) with three oral doses of curcumin prevented recrudescence, providing almost 95% protection. The parasites were completely cleared in blood with ART-alone (AE) or ART+curcumin (AC) treatments in the short-term, although the clearance was faster in the latter case involving increased ROS generation. But, parasites in liver and spleen were not cleared in AE or AC treatments, perhaps, serving as a reservoir for recrudescence. Parasitemia in blood reached up to 60% in AE-treated mice during the recrudescence phase, leading to death of animals. A transient increase of up to 2–3% parasitemia was observed in AC-treatment, leading to protection and reversal of splenomegaly. A striking increase in spleen mRNA levels for TLR2, IL-10 and IgG-subclass antibodies but a decrease in those for INFγ and IL-12 was observed in AC-treatment. There was a striking increase in IL-10 and IgG subclass antibody levels but a decrease in INFγ levels in sera leading to protection against recrudescence. AC-treatment failed to protect against recrudescence in TLR2−/− and IL-10−/− animals. IL-10 injection to AE-treated wild type mice and AC-treated TLR2−/− mice was able to prolong survival. Blood from the recrudescence phase in AE-treatment, but not from AC-treatment, was able to reinfect and kill naïve animals. Sera from the recrudescence phase of AC-treated animals reacted with several parasite proteins compared to that from AE-treated animals. It is proposed that activation of TLR2-mediated innate immune response leading to enhanced IL-10 production and generation of anti-parasite antibodies contribute to protective immunity in AC-treated mice. These results indicate a potential for curcumin-based combination therapy to be tested for prevention of recrudescence in falciparum and relapse in vivax malaria

    Vitamin A Enhances Antitumor Effect of a Green Tea Polyphenol on Melanoma by Upregulating the Polyphenol Sensing Molecule 67-kDa Laminin Receptor

    Get PDF
    BACKGROUND: Green tea consumption has been shown to have cancer preventive qualities. Among the constituents of green tea, (-)-Epigallocatechin-3-O-gallate (EGCG) is the most effective at inhibiting carcinogenesis. However, the concentrations of EGCG that are required to elicit the anticancer effects in a variety of cancer cell types are much higher than the peak plasma concentration that occurs after drinking an equivalent of 2-3 cups of green tea. To obtain the anticancer effects of EGCG when consumed at a reasonable concentration in daily life, we investigated the combination effect of EGCG and food ingredient that may enhance the anticancer activity of EGCG on subcutaneous tumor growth in C57BL/6N mice challenged with B16 melanoma cells. METHODOLOGY/PRINCIPAL FINDINGS: All-trans-retinoic acid (ATRA) enhanced the expression of the 67-kDa laminin receptor (67LR) and increased EGCG-induced cell growth inhibition in B16 melanoma cells. The cell growth inhibition seen with the combined EGCG and ATRA treatment was abolished by treatment with an anti-67LR antibody. In addition, the combined EGCG and ATRA treatment significantly suppressed the melanoma tumor growth in mice. Expression of 67LR in the tumor increased upon oral administration of ATRA or a combined treatment of EGCG and ATRA treatment. Furthermore, RNAi-mediated silencing of the retinoic acid receptor (RAR) alpha attenuated the ATRA-induced enhancement of 67LR expression in the melanoma cells. An RAR agonist enhanced the expression levels of 67LR and increased EGCG-induced cell growth inhibition. CONCLUSIONS/SIGNIFICANCE: Our findings provide a molecular basis for the combination effect seen with dietary components, and indicate that ATRA may be a beneficial food component for cancer prevention when combined with EGCG

    Eef1a2 Promotes Cell Growth, Inhibits Apoptosis and Activates JAK/STAT and AKT Signaling in Mouse Plasmacytomas

    Get PDF
    The canonical function of EEF1A2, normally expressed only in muscle, brain, and heart, is in translational elongation, but recent studies suggest a non-canonical function as a proto-oncogene that is overexpressed in a variety of solid tumors including breast and ovary. Transcriptional profiling of a spectrum of primary mouse B cell lineage neoplasms showed that transcripts encoding EEF1A2 were uniquely overexpressed in plasmacytomas (PCT), tumors of mature plasma cells. Cases of human multiple myeloma expressed significantly higher levels of EEF1A2 transcripts than normal bone marrow plasma cells. High-level expression was also a feature of a subset of cell lines developed from mouse PCT and from the human MM.Heightened expression of EEF1A2 was not associated with increased copy number or coding sequence mutations. shRNA-mediated knockdown of Eef1a2 transcripts and protein was associated with growth inhibition due to delayed G1-S progression, and effects on apoptosis that were seen only under serum-starved conditions. Transcriptional profiles and western blot analyses of knockdown cells revealed impaired JAK/STAT and PI3K/AKT signaling suggesting their contributions to EEF1A2-mediated effects on PCT induction or progression.EEF1A2 may play contribute to the induction or progression of some PCT and a small percentage of MM. Eef1a2 could also prove to be a useful new marker for a subset of MM and, ultimately, a possible target for therapy

    Triphala inhibits both in vitro and in vivo xenograft growth of pancreatic tumor cells by inducing apoptosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Triphala is commonly used in Ayurvedic medicine to treat variety of diseases; however its mechanism of action remains unexplored. This study elucidates the molecular mechanism of Triphala against human pancreatic cancer in the cellular and in vivo model.</p> <p>Methods</p> <p>Growth-inhibitory effects of Triphala were evaluated in Capan-2, BxPC-3 and HPDE-6 cells by Sulphoradamine-B assay. Apoptosis was determined by cell death assay and western blotting. Triphala was administered orally to nude mice implanted with Capan-2 xenograft. Tumors were analyzed by immunohistochemistry and western blotting.</p> <p>Results</p> <p>Exposure of Capan-2 cells to the aqueous extract of Triphala for 24 h resulted in the significant decrease in the survival of cells in a dose-dependent manner with an IC50 of about 50 μg/ml. Triphala-mediated reduced cell survival correlated with induction of apoptosis, which was associated with reactive oxygen species (ROS) generation. Triphala-induced apoptosis was linked with phosphorylation of p53 at Ser-15 and ERK at Thr-202/Tyr-204 in Capan-2 cells. Above mentioned effects were significantly blocked when the cells were pretreated with an antioxidant N-acetylcysteine (NAC), suggesting the involvement of ROS generation. Pretreatment of cells with pifithrin-α or U0126, specific inhibitors of p53 or MEK-1/2, significantly attenuated Triphala-induced apoptosis. Moreover, NAC or U0126 pretreatment significantly attenuated Triphala-induced p53 transcriptional activity. Similarly, Triphala induced apoptosis in another pancreatic cancer cell line BxPC-3 by activating ERK. On the other hand, Triphala failed to induce apoptosis or activate ERK or p53 in normal human pancreatic ductal epithelial (HPDE-6) cells. Further, oral administration of 50 mg/kg or 100 mg/kg Triphala in PBS, 5 days/week significantly suppressed the growth of Capan-2 pancreatic tumor-xenograft. Reduced tumor-growth in Triphala fed mice was due to increased apoptosis in the tumors cells, which was associated with increased activation of p53 and ERK.</p> <p>Conclusion</p> <p>Our preclinical studies demonstrate that Triphala is effective in inhibiting the growth of human pancreatic cancer cells in both cellular and in vivo model. Our data also suggests that the growth inhibitory effects of Triphala is mediated by the activation of ERK and p53 and shows potential for the treatment and/or prevention of human pancreatic cancer.</p

    Studies on the antidiarrhoeal activity of Aegle marmelos unripe fruit: Validating its traditional usage

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Aegle marmelos </it>(L.) Correa has been widely used in indigenous systems of Indian medicine due to its various medicinal properties. However, despite its traditional usage as an anti-diarrhoeal there is limited information regarding its mode of action in infectious forms of diarrhoea. Hence, we evaluated the hot aqueous extract (decoction) of dried unripe fruit pulp of <it>A. marmelos </it>for its antimicrobial activity and effect on various aspects of pathogenicity of infectious diarrhoea.</p> <p>Methods</p> <p>The decoction was assessed for its antibacterial, antigiardial and antirotaviral activities. The effect of the decoction on adherence of enteropathogenic <it>Escherichia coli </it>and invasion of enteroinvasive <it>E. coli </it>and <it>Shigella flexneri </it>to HEp-2 cells were assessed as a measure of its effect on colonization. The effect of the decoction on production of <it>E. coli </it>heat labile toxin (LT) and cholera toxin (CT) and their binding to ganglioside monosialic acid receptor (GM1) were assessed by GM1-enzyme linked immuno sorbent assay whereas its effect on production and action of <it>E. coli </it>heat stable toxin (ST) was assessed by suckling mouse assay.</p> <p>Results</p> <p>The decoction showed cidal activity against <it>Giardia </it>and rotavirus whereas viability of none of the six bacterial strains tested was affected. It significantly reduced bacterial adherence to and invasion of HEp-2 cells. The extract also affected production of CT and binding of both LT and CT to GM1. However, it had no effect on ST.</p> <p>Conclusion</p> <p>The decoction of the unripe fruit pulp of <it>A. marmelos</it>, despite having limited antimicrobial activity, affected the bacterial colonization to gut epithelium and production and action of certain enterotoxins. These observations suggest the varied possible modes of action of <it>A. marmelos </it>in infectious forms of diarrhoea thereby validating its mention in the ancient Indian texts and continued use by local communities for the treatment of diarrhoeal diseases.</p

    The plant-based immunomodulator curcumin as a potential candidate for the development of an adjunctive therapy for cerebral malaria

    Get PDF
    The clinical manifestations of cerebral malaria (CM) are well correlated with underlying major pathophysiological events occurring during an acute malaria infection, the most important of which, is the adherence of parasitized erythrocytes to endothelial cells ultimately leading to sequestration and obstruction of brain capillaries. The consequent reduction in blood flow, leads to cerebral hypoxia, localized inflammation and release of neurotoxic molecules and inflammatory cytokines by the endothelium. The pharmacological regulation of these immunopathological processes by immunomodulatory molecules may potentially benefit the management of this severe complication. Adjunctive therapy of CM patients with an appropriate immunomodulatory compound possessing even moderate anti-malarial activity with the capacity to down regulate excess production of proinflammatory cytokines and expression of adhesion molecules, could potentially reverse cytoadherence, improve survival and prevent neurological sequelae. Current major drug discovery programmes are mainly focused on novel parasite targets and mechanisms of action. However, the discovery of compounds targeting the host remains a largely unexplored but attractive area of drug discovery research for the treatment of CM. This review discusses the properties of the plant immune-modifier curcumin and its potential as an adjunctive therapy for the management of this complication
    corecore