257 research outputs found

    Cell matrix adhesion in cell migration

    Get PDF
    The ability of cells to migrate is a fundamental physiological process involved in embryonic development, tissue homeostasis, immune surveillance and wound healing. In order for cells to migrate, they must interact with their environment using adhesion receptors, such as integrins, and form specialized adhesion complexes that mediate responses to different extracellular cues. In this review, we discuss the role of integrin adhesion complexes (IACs) in cell migration, highlighting the layers of regulation that are involved, including intracellular signalling cascades, mechanosensing and reciprocal feedback to the extracellular environment. We also discuss the role of IACs in extracellular matrix remodeling and how they impact upon cell migration

    The cell biologist's guide to super-resolution microscopy

    Get PDF
    Fluorescence microscopy has become a ubiquitous method to observe the location of specific molecular components within cells. However, the resolution of light microscopy is limited by the laws of diffraction to a few hundred nanometers, blurring most cellular details. Over the last two decades, several techniques – grouped under the ‘super-resolution microscopy’ moniker – have been designed to bypass this limitation, revealing the cellular organization down to the nanoscale. The number and variety of these techniques have steadily increased, to the point that it has become difficult for cell biologists and seasoned microscopists alike to identify the specific technique best suited to their needs. Available techniques include image processing strategies that generate super-resolved images, optical imaging schemes that overcome the diffraction limit and sample manipulations that expand the size of the biological sample. In this Cell Science at a Glance article and the accompanying poster, we provide key pointers to help users navigate through the various super-resolution methods by briefly summarizing the principles behind each technique, highlighting both critical strengths and weaknesses, as well as providing example images

    Fluctuation-Based Super-Resolution Traction Force Microscopy

    Get PDF
    Cellular mechanics play a crucial role in tissue homeostasis and are often misregulated in disease. Traction force microscopy is one of the key methods that has enabled researchers to study fundamental aspects of mechanobiology; however, traction force microscopy is limited by poor resolution. Here, we propose a simplified protocol and imaging strategy that enhances the output of traction force microscopy by increasing i) achievable bead density and ii) the accuracy of bead tracking. Our approach relies on super-resolution microscopy, enabled by fluorescence fluctuation analysis. Our pipeline can be used on spinning-disk confocal or widefield microscopes and is compatible with available analysis software. In addition, we demonstrate that our workflow can be used to gain biologically relevant information and is suitable for fast long-term live measurement of traction forces even in light-sensitive cells. Finally, using fluctuation-based traction force microscopy, we observe that filopodia align to the force field generated by focal adhesions

    Automated cell tracking using StarDist and TrackMate [version 1; peer review: awaiting peer review]

    Get PDF
    The ability of cells to migrate is a fundamental physiological process involved in embryonic development, tissue homeostasis, immune surveillance, and wound healing. Therefore, the mechanisms governing cellular locomotion have been under intense scrutiny over the last 50 years. One of the main tools of this scrutiny is live-cell quantitative imaging, where researchers image cells over time to study their migration and quantitatively analyze their dynamics by tracking them using the recorded images. Despite the availability of computational tools, manual tracking remains widely used among researchers due to the difficulty setting up robust automated cell tracking and large-scale analysis. Here we provide a detailed analysis pipeline illustrating how the deep learning network StarDist can be combined with the popular tracking software TrackMate to perform 2D automated cell tracking and provide fully quantitative readouts. Our proposed protocol is compatible with both fluorescent and widefield images. It only requires freely available and open-source software (ZeroCostDL4Mic and Fiji), and does not require any coding knowledge from the users, making it a versatile and powerful tool for the field. We demonstrate this pipeline's usability by automatically tracking cancer cells and T cells using fluorescent and brightfield images. Importantly, we provide, as supplementary information, a detailed step-by-step protocol to allow researchers to implement it with their images

    Talin Rod Domain Containing Protein 1 (TLNRD1) is a novel actin-bundling protein which promotes filopodia formation

    Get PDF
    Talin is a mechanosensitive adapter protein which couples integrins to the cytoskeleton and regulates integrin-mediated adhesion. Talin rod domain-containing protein-1 (TLNRD1) shares 22% homology with the R7R8 domains of talin, and is highly conserved throughout vertebrate evolution, however little is known about its function. Here we show that TLNRD1 is an α-helical protein which shares the same atypical topology as talin R7R8, but forms a novel antiparallel dimer arrangement. Actin co-sedimentation assays and electron microscopy reveal TLNRD1 is an actin-bundling protein that forms tight actin bundles. In addition, TLNRD1 binds to the same LD-motif containing proteins, RIAM and KANK, as talin, and thus may act in competition with talin. Filopodia are cell protrusions supported by tightly bundled actin filaments and TLNRD1 localises to filopodia tips, increases filopodia number and promotes cell migration in 2D. Together our results suggest that TLNRD1 has similar functionality to talin R7R8, serving as a nexus between the actin and microtubule cytoskeletons independent of adhesion complexes

    On commensurable hyperbolic Coxeter groups

    Get PDF
    For Coxeter groups acting non-cocompactly but with finite covolume on real hyperbolic space Hn, new methods are presented to distinguish them up to (wide) commensurability. We exploit these ideas and determine the commensurability classes of all hyperbolic Coxeter groups whose fundamental polyhedra are pyramids over a product of two simplices of positive dimensions

    The SARAF-LINAC Project for SARAF-PHASE 2

    Get PDF
    THPF005International audienceSNRC and CEA collaborate to the upgrade of theSARAF accelerator to 5 mA CW 40 MeV deuteron andproton beams (Phase 2). This paper presents the referencedesign of the SARAF-LINAC Project including a fourvane176 MHz RFQ, a MEBT and a superconducting linacmade of four five-meter cryomodules housing 26superconducting HWR cavities and 20 superconductingsolenoids. The first two identical cryomodules house lowbeta(β\betaopt = 0.091), 280 mm long (flange to flange), 176MHz HWR cavities, the two identical last cryomoduleshouse high-beta (β\betaopt = 0.181), 410 mm long, 176 MHz,HWR cavities. The beam is focused with superconductingsolenoids located between cavities housing steering coils.A BPM is placed upstream each solenoid

    Integrin endosomal signalling suppresses anoikis

    Get PDF
    Integrin-containing focal adhesions transmit extracellular signals across the plasma membrane to modulate cell adhesion, signalling and survival. Although integrins are known to undergo continuous endo/exocytic traffic, the potential impact of endocytic traffic on integrin-induced signals is unknown. Here, we demonstrate that integrin signalling is not restricted to cell-ECM adhesions and identify an endosomal signalling platform that supports integrin signalling away from the plasma membrane. We show that active focal adhesion kinase (FAK), an established marker of integrin-ECM downstream signalling, localizes with active integrins on endosomes. Integrin endocytosis positively regulates adhesion-induced FAK activation, which is early endosome antigen-1 and small GTPase Rab21 dependent. FAK binds directly to purified endosomes and becomes activated on them, suggesting a role for endocytosis in enhancing distinct integrin downstream signalling events. Finally, endosomal integrin signalling contributes to cancer-related processes such as anoikis resistance, anchorage independence and metastasis.</p

    Automated cell tracking using StarDist and TrackMate

    Get PDF
    The ability of cells to migrate is a fundamental physiological process involved in embryonic development, tissue homeostasis, immune surveillance, and wound healing. Therefore, the mechanisms governing cellular locomotion have been under intense scrutiny over the last 50 years. One of the main tools of this scrutiny is live-cell quantitative imaging, where researchers image cells over time to study their migration and quantitatively analyze their dynamics by tracking them using the recorded images. Despite the availability of computational tools, manual tracking remains widely used among researchers due to the difficulty setting up robust automated cell tracking and large-scale analysis. Here we provide a detailed analysis pipeline illustrating how the deep learning network StarDist can be combined with the popular tracking software TrackMate to perform 2D automated cell tracking and provide fully quantitative readouts. Our proposed protocol is compatible with both fluorescent and widefield images. It only requires freely available and open-source software (ZeroCostDL4Mic and Fiji), and does not require any coding knowledge from the users, making it a versatile and powerful tool for the field. We demonstrate this pipeline's usability by automatically tracking cancer cells and T cells using fluorescent and brightfield images. Importantly, we provide, as supplementary information, a detailed step-by-step protocol to allow researchers to implement it with their images. </div
    corecore