83 research outputs found

    Systematic Analysis of Stability Patterns in Plant Primary Metabolism

    Get PDF
    Metabolic networks are characterized by complex interactions and regulatory mechanisms between many individual components. These interactions determine whether a steady state is stable to perturbations. Structural kinetic modeling (SKM) is a framework to analyze the stability of metabolic steady states that allows the study of the system Jacobian without requiring detailed knowledge about individual rate equations. Stability criteria can be derived by generating a large number of structural kinetic models (SK-models) with randomly sampled parameter sets and evaluating the resulting Jacobian matrices. Until now, SKM experiments applied univariate tests to detect the network components with the largest influence on stability. In this work, we present an extended SKM approach relying on supervised machine learning to detect patterns of enzyme-metabolite interactions that act together in an orchestrated manner to ensure stability. We demonstrate its application on a detailed SK-model of the Calvin-Benson cycle and connected pathways. The identified stability patterns are highly complex reflecting that changes in dynamic properties depend on concerted interactions between several network components. In total, we find more patterns that reliably ensure stability than patterns ensuring instability. This shows that the design of this system is strongly targeted towards maintaining stability. We also investigate the effect of allosteric regulators revealing that the tendency to stability is significantly increased by including experimentally determined regulatory mechanisms that have not yet been integrated into existing kinetic models

    Solution Structure of Kurtoxin: A Gating Modifier Selective for Cav3 Voltage-Gated Ca2+ Channels

    Get PDF

    Mesenchymal Stem Cell Responses to Bone-Mimetic Electrospun Matrices Composed of Polycaprolactone, Collagen I and Nanoparticulate Hydroxyapatite

    Get PDF
    The performance of biomaterials designed for bone repair depends, in part, on the ability of the material to support the adhesion and survival of mesenchymal stem cells (MSCs). In this study, a nanofibrous bone-mimicking scaffold was electrospun from a mixture of polycaprolactone (PCL), collagen I, and hydroxyapatite (HA) nanoparticles with a dry weight ratio of 50/30/20 respectively (PCL/col/HA). The cytocompatibility of this tri-component scaffold was compared with three other scaffold formulations: 100% PCL (PCL), 100% collagen I (col), and a bi-component scaffold containing 80% PCL/20% HA (PCL/HA). Scanning electron microscopy, fluorescent live cell imaging, and MTS assays showed that MSCs adhered to the PCL, PCL/HA and PCL/col/HA scaffolds, however more rapid cell spreading and significantly greater cell proliferation was observed for MSCs on the tri-component bone-mimetic scaffolds. In contrast, the col scaffolds did not support cell spreading or survival, possibly due to the low tensile modulus of this material. PCL/col/HA scaffolds adsorbed a substantially greater quantity of the adhesive proteins, fibronectin and vitronectin, than PCL or PCL/HA following in vitro exposure to serum, or placement into rat tibiae, which may have contributed to the favorable cell responses to the tri-component substrates. In addition, cells seeded onto PCL/col/HA scaffolds showed markedly increased levels of phosphorylated FAK, a marker of integrin activation and a signaling molecule known to be important for directing cell survival and osteoblastic differentiation. Collectively these results suggest that electrospun bone-mimetic matrices serve as promising degradable substrates for bone regenerative applications

    Use of green solvents as pre-treatment of dissolving pulp to decrease CS2 consumption from viscose production

    Get PDF
    Choline chloride-based deep eutectic solvents are widely used in biomass processing. In this work, four different green solvent mixtures were used as pre-treatment of acid sulphite dissolving pulp with the hypothesis of increasing the possibilities to produce viscose fibres and decreasing the use of the harmful and toxic carbon disulphide in the process. The experiments were performed at two different pulp to solvent mass ratios. Pulp quality parameters were also measured to determine the suitability of the pretreatment: a-cellulose, viscosity, lignin and pentosan content. In addition, X-ray diffraction analysis of pulps at the best solid to liquid ratio was performed to obtain the influence of the crystallinity index. Best results were obtained with the use of lactic acid, with reactivity values close to 94%, giving a reduction of CS2 usage of 15.83%. Furthermore, a linear relationship between the crystallinity index calculated by the XRD and reactivity with a regression factor of 0.87 was found
    • …
    corecore