1,419 research outputs found

    Application of the Feshbach-resonance management to a tightly confined Bose-Einstein condensate

    Full text link
    We study suppression of the collapse and stabilization of matter-wave solitons by means of time-periodic modulation of the effective nonlinearity, using the nonpolynomial Schroedinger equation (NPSE) for BEC trapped in a tight cigar-shaped potential. By means of systematic simulations, a stability region is identified in the plane of the modulation amplitude and frequency. In the low-frequency regime, solitons feature chaotic evolution, although they remain robust objects.Comment: Physical Review A, in pres

    Averaging For Solitons With Nonlinearity Management

    Full text link
    We develop an averaging method for solitons of the nonlinear Schr{\"o}dinger equation with periodically varying nonlinearity coefficient. This method is used to effectively describe solitons in Bose-Einstein condensates, in the context of the recently proposed and experimentally realizable technique of Feshbach resonance management. Using the derived local averaged equation, we study matter-wave bright and dark solitons and demonstrate a very good agreement between solutions of the averaged and full equations.Comment: 6 pages, 5 figures, in pres

    Nonlinearity Management in Higher Dimensions

    Full text link
    In the present short communication, we revisit nonlinearity management of the time-periodic nonlinear Schrodinger equation and the related averaging procedure. We prove that the averaged nonlinear Schrodinger equation does not support the blow-up of solutions in higher dimensions, independently of the strength in the nonlinearity coefficient variance. This conclusion agrees with earlier works in the case of strong nonlinearity management but contradicts those in the case of weak nonlinearity management. The apparent discrepancy is explained by the divergence of the averaging procedure in the limit of weak nonlinearity management.Comment: 9 pages, 1 figure

    Stable spinning optical solitons in three dimensions

    Full text link
    We introduce spatiotemporal spinning solitons (vortex tori) of the three-dimensional nonlinear Schrodinger equation with focusing cubic and defocusing quintic nonlinearities. The first ever found completely stable spatiotemporal vortex solitons are demonstrated. A general conclusion is that stable spinning solitons are possible as a result of competition between focusing and defocusing nonlinearities.Comment: 4 pages, 6 figures, accepted to Phys. Rev. Let

    Rotating optical soliton clusters

    Full text link
    We introduce the concept of soliton clusters -- multi-soliton bound states in a homogeneous bulk optical medium, and reveal a key physical mechanism for their stabilization associated with a staircase-like phase distribution that induces a net angular momentum and leads to cluster rotation. The ringlike soliton clusters provide a nontrivial generalization of the concepts of two-soliton spiraling, optical vortex solitons, and necklace-type optical beams.Comment: 4 pages, 5 figure

    Time-of-flight mass measurements of neutron-rich chromium isotopes up to N = 40 and implications for the accreted neutron star crust

    Full text link
    We present the mass excesses of 59-64Cr, obtained from recent time-of-flight nuclear mass measurements at the National Superconducting Cyclotron Laboratory at Michigan State University. The mass of 64Cr is determined for the first time, with an atomic mass excess of -33.48(44) MeV. We find a significantly different two-neutron separation energy S2n trend for neutron-rich isotopes of chromium, removing the previously observed enhancement in binding at N=38. Additionally, we extend the S2n trend for chromium to N=40, revealing behavior consistent with the previously identified island of inversion in this region. We compare our results to state-of-the-art shell-model calculations performed with a modified Lenzi-Nowacki-Poves-Sieja interaction in the fp shell, including the g9/2 and d5/2 orbits for the neutron valence space. We employ our result for the mass of 64Cr in accreted neutron star crust network calculations and find a reduction in the strength and depth of electron-capture heating from the A=64 isobaric chain, resulting in a cooler than expected accreted neutron star crust. This reduced heating is found to be due to the >1-MeV reduction in binding for 64Cr with respect to values from commonly used global mass models.Comment: Accepted to Physical Review

    A theory of L1L^1-dissipative solvers for scalar conservation laws with discontinuous flux

    Full text link
    We propose a general framework for the study of L1L^1 contractive semigroups of solutions to conservation laws with discontinuous flux. Developing the ideas of a number of preceding works we claim that the whole admissibility issue is reduced to the selection of a family of "elementary solutions", which are certain piecewise constant stationary weak solutions. We refer to such a family as a "germ". It is well known that (CL) admits many different L1L^1 contractive semigroups, some of which reflects different physical applications. We revisit a number of the existing admissibility (or entropy) conditions and identify the germs that underly these conditions. We devote specific attention to the anishing viscosity" germ, which is a way to express the "Γ\Gamma-condition" of Diehl. For any given germ, we formulate "germ-based" admissibility conditions in the form of a trace condition on the flux discontinuity line x=0x=0 (in the spirit of Vol'pert) and in the form of a family of global entropy inequalities (following Kruzhkov and Carrillo). We characterize those germs that lead to the L1L^1-contraction property for the associated admissible solutions. Our approach offers a streamlined and unifying perspective on many of the known entropy conditions, making it possible to recover earlier uniqueness results under weaker conditions than before, and to provide new results for other less studied problems. Several strategies for proving the existence of admissible solutions are discussed, and existence results are given for fluxes satisfying some additional conditions. These are based on convergence results either for the vanishing viscosity method (with standard viscosity or with specific viscosities "adapted" to the choice of a germ), or for specific germ-adapted finite volume schemes

    Coordination of opposing sex-specific and core muscle groups regulates male tail posture during Caenorhabditis elegans male mating behavior

    Get PDF
    Background To survive and reproduce, animals must be able to modify their motor behavior in response to changes in the environment. We studied a complex behavior of Caenorhabditis elegans, male mating behavior, which provided a model for understanding motor behaviors at the genetic, molecular as well as circuit level. C. elegans male mating behavior consists of a series of six sub-steps: response to contact, backing, turning, vulva location, spicule insertion, and sperm transfer. The male tail contains most of the sensory structures required for mating, in addition to the copulatory structures, and thus to carry out the steps of mating behavior, the male must keep his tail in contact with the hermaphrodite. However, because the hermaphrodite does not play an active role in mating and continues moving, the male must modify his tail posture to maintain contact. We provide a better understanding of the molecular and neuro-muscular pathways that regulate male tail posture during mating. Results Genetic and laser ablation analysis, in conjunction with behavioral assays were used to determine neurotransmitters, receptors, neurons and muscles required for the regulation of male tail posture. We showed that proper male tail posture is maintained by the coordinated activity of opposing muscle groups that curl the tail ventrally and dorsally. Specifically, acetylcholine regulates both ventral and dorsal curling of the male tail, partially through anthelmintic levamisole-sensitive, nicotinic receptor subunits. Male-specific muscles are required for acetylcholine-driven ventral curling of the male tail but dorsal curling requires the dorsal body wall muscles shared by males and hermaphrodites. Gamma-aminobutyric acid activity is required for both dorsal and ventral acetylcholine-induced curling of the male tail and an inhibitory gamma-aminobutyric acid receptor, UNC-49, prevents over-curling of the male tail during mating, suggesting that cross-inhibition of muscle groups helps maintain proper tail posture. Conclusion Our results demonstrated that coordination of opposing sex-specific and core muscle groups, through the activity of multiple neurotransmitters, is required for regulation of male tail posture during mating. We have provided a simple model for regulation of male tail posture that provides a foundation for studies of how genes, molecular pathways, and neural circuits contribute to sensory regulation of this motor behavior

    Data Collection in Care Homes for Older Adults: A National Survey in England

    Get PDF
    \ua9 2023 The Author(s). Context: In many countries, there is a specification for information that should be collected by care homes. So-called ‘minimum data-sets’ (MDS) are often lengthy, and report on resident health and wellbeing, staff, and facilities. In the UK, the absence of any easily accessible data on the care home population was highlighted at the start of the COVID-19 pandemic. Care homes faced multiple requests for data from external agencies who had little knowledge of what care homes were already collecting. Objective: This study aimed to identify the range (and method) of data collected by care home organisations, in a country without a mandated MDS. Methods: Online survey of care homes (with/without nursing) in England. Care homes recruited via research and care home networks, social media. Questions covered data content, storage, and views on data sharing, analysed with descriptive statistics. Findings: 273 responses were received, representing over 5,000 care homes. Care homes reported extensive data on the health, care and support needs of individual residents, their preferences, and activities. Clinical measures and tools adopted from health were commonly used, but few collected information on quality-of-life. Care homes reported uses of these data that included monitoring care quality, medication use, staff training needs, budgeting, and marketing. Concerns over privacy and data protection regulations are potential barriers to data sharing. Implications: These findings challenge the notion that incentives or mandates are required to stimulate data collection in care homes. Care home organisations are collecting an extensive range of resident-level information for their own uses. Countries considering introducing social care records or an MDS could start by working with care home organisations to review existing data collection and evaluate the implications of collecting and sharing data. A critical approach to the appropriateness of health-related tools in this setting is overdue
    corecore