173 research outputs found

    Animal welfare impacts of badger culling operations

    Get PDF
    We are writing to express our extreme concern following recent media coverage1, 2 relating to the methodology being used by contractors to kill badgers under licence, as part of the government’s policy to control bovine TB in cattle. The coverage relates to the shooting of badgers that have been captured in live traps. Covert video footage (https://bit.ly/2Eud1iR ) from Cumbria shows a trapped badger being shot with a firearm at close range, following which it appears to take close to a minute to stop moving. The contractor clearly observes the animal during this time but makes no attempt to expedite the death of the badger and prevent further suffering, as required by the current Natural England best practice guide which states: ‘Immediately after shooting, the animal should be checked to ensure it is dead, and if there is any doubt, a second shot must be taken as soon as possible.’3 The conversation between the contractor and his companion also suggests they were considering moving the badger to another site before finally bagging the carcase, again breaching the best practice guide. While the footage only relates to the experience of a single badger, and while the degree to which the badger was conscious in the period immediately following the shot is unclear, we can by no means be certain that the badger did not suffer. It also raises serious questions about the training, competence and behaviour of contractors, in relation to both badger welfare, and biosecurity. This adds to existing concerns relating to the humaneness of ‘controlled shooting’ (targeting free-roaming badgers with rifles), which continues to be a permitted method under culling licences, in spite of the reservations expressed by both the government-commissioned Independent Expert Panel in its 2014 report,4 and the BVA, which concluded in 2015 that it ‘can no longer support the continued use of controlled shooting as part of the badger control policy’.5 (However, it has since continued to support the issuing of licences which permit the method). The BVA has consistently indicated its support for what it calls the ‘tried and tested’ method of trapping and shooting, but has thus far failed to provide comprehensive and robust evidence for the humaneness of this method. Figure1 Download figure Open in new tab Download powerpoint Natural England reported that its monitors observed 74 (just over 0.6 per cent) of controlled shooting events for accuracy and humaneness During 2017, almost 20,000 badgers were killed under licence across 19 cull zones, around 60 per cent of which were killed by controlled shooting, the remainder being trapped and shot.6 Natural England reported that its monitors observed 74 (just over 0.6 per cent) of controlled shooting events for accuracy and humaneness. No information has been provided on the extent to which trapping and shooting activities were monitored. This raises serious concerns about the extent of suffering that might be experienced by very large numbers of animals, for which contractors are not being held to account. If contractors reach their maximum culling targets set by Natural England for 2018, as many as 41,000 additional badgers could be killed.7 The extent to which these animals will suffer is once again being left in the hands of contractors, with woefully inadequate oversight, and in the face of anecdotal evidence of breaches of best practice guidance. This situation is clearly unacceptable from an animal welfare perspective and it is our view that by endorsing the policy, the BVA is contradicting the principles contained within its own animal welfare strategy.8 We therefore urge the BVA to withdraw its support for any further licensed badger culling, and the RCVS to make it clear that any veterinarian who provides support for culling activities that result in unnecessary and avoidable animal suffering could face disciplinary proceedings. The veterinary profession has no business supporting this licensed mass killing with all its inherent negative welfare and biosecurity implications, and for which the disease control benefits are, at best, extremely uncertain. We believe the continued support for the culls by veterinary bodies in the face of poor evidence for its efficacy damages the credibility of the profession, and that same support in the face of potential animal suffering on a large scale undermines its reputation. We stand ready to discuss these issues in more detail

    Magnetotransport in a pseudomorphic GaAs/GaInAs/GaAlAs heterostructure with a Si delta-doping layer

    Full text link
    Magnetotransport properties of a pseudomorphic GaAs/Ga0.8In0.2As/Ga0.75Al0.25As heterostructure are investigated in pulsed magnetic fields up to 50 T and at temperatures of T=1.4 K and 4.2 K. The structure studied consists of a Si delta-layer parallel to a Ga0.8In0.2As quantum well (QW). The dark electron density of the structure is n_e=1.67x 10^16 m^-2. By illumination the density can be increased up to a factor of 4; this way the second subband in the Ga0.8In0.2As QW can become populated as well as the Si delta-layer. The presence of electrons in the delta-layer results in drastic changes in the transport data, especially at magnetic fields beyond 30 T. The phenomena observed are interpreted as: 1) magnetic freeze-out of carriers in the delta-layer when a low density of electrons is present in the delta-layer, and 2) quantization of the electron motion in the two dimensional electron gases in both the Ga0.8In0.2As QW and the Si delta-layer in the case of high densities. These conclusions are corroborated by the numerical results of our theoretical model. We obtain a satisfactory agreement between model and experiment.Comment: 23 pages, RevTex, 11 Postscript figures (accepted for Phys. Rev. B

    Converting simulated total dry matter to fresh marketable yield for field vegetables at a range of nitrogen supply levels

    Get PDF
    Simultaneous analysis of economic and environmental performance of horticultural crop production requires qualified assumptions on the effect of management options, and particularly of nitrogen (N) fertilisation, on the net returns of the farm. Dynamic soil-plant-environment simulation models for agro-ecosystems are frequently applied to predict crop yield, generally as dry matter per area, and the environmental impact of production. Economic analysis requires conversion of yields to fresh marketable weight, which is not easy to calculate for vegetables, since different species have different properties and special market requirements. Furthermore, the marketable part of many vegetables is dependent on N availability during growth, which may lead to complete crop failure under sub-optimal N supply in tightly calculated N fertiliser regimes or low-input systems. In this paper we present two methods for converting simulated total dry matter to marketable fresh matter yield for various vegetables and European growth conditions, taking into consideration the effect of N supply: (i) a regression based function for vegetables sold as bulk or bunching ware and (ii) a population approach for piecewise sold row crops. For both methods, to be used in the context of a dynamic simulation model, parameter values were compiled from a literature survey. Implemented in such a model, both algorithms were tested against experimental field data, yielding an Index of Agreement of 0.80 for the regression strategy and 0.90 for the population strategy. Furthermore, the population strategy was capable of reflecting rather well the effect of crop spacing on yield and the effect of N supply on product grading

    Mass Spectrometry Analysis of Hepcidin Peptides in Experimental Mouse Models

    Get PDF
    The mouse is a valuable model for unravelling the role of hepcidin in iron homeostasis, however, such studies still report hepcidin mRNA levels as a surrogate marker for bioactive hepcidin in its pivotal function to block ferroportin-mediated iron transport. Here, we aimed to assess bioactive mouse Hepcidin-1 (Hep-1) and its paralogue Hepcidin-2 (Hep-2) at the peptide level. To this purpose, fourier transform ion cyclotron resonance (FTICR) and tandem-MS was used for hepcidin identification, after which a time-of-flight (TOF) MS-based methodology was exploited to routinely determine Hep-1 and -2 levels in mouse serum and urine. This method was biologically validated by hepcidin assessment in: i) 3 mouse strains (C57Bl/6; DBA/2 and BABL/c) upon stimulation with intravenous iron and LPS, ii) homozygous Hfe knock out, homozygous transferrin receptor 2 (Y245X) mutated mice and double affected mice, and iii) mice treated with a sublethal hepatotoxic dose of paracetamol. The results showed that detection of Hep-1 was restricted to serum, whereas Hep-2 and its presumed isoforms were predominantly present in urine. Elevations in serum Hep-1 and urine Hep-2 upon intravenous iron or LPS were only moderate and varied considerably between mouse strains. Serum Hep-1 was decreased in all three hemochromatosis models, being lowest in the double affected mice. Serum Hep-1 levels correlated with liver hepcidin-1 gene expression, while acute liver damage by paracetamol depleted Hep-1 from serum. Furthermore, serum Hep-1 appeared to be an excellent indicator of splenic iron accumulation. In conclusion, Hep-1 and Hep-2 peptide responses in experimental mouse agree with the known biology of hepcidin mRNA regulators, and their measurement can now be implemented in experimental mouse models to provide novel insights in post-transcriptional regulation, hepcidin function, and kinetics

    Cancer risk in patients with Noonan syndrome carrying a PTPN11 mutation

    Get PDF
    Noonan syndrome (NS) is characterized by short stature, facial dysmorphisms and congenital heart defects. PTPN11 mutations are the most common cause of NS. Patients with NS have a predisposition for leukemia and certain solid tumors. Data on the incidence of malignancies in NS are lacking. Our objective was to estimate the cancer risk and spectrum in patients with NS carrying a PTPN11 mutation. In addition, we have investigated whether specific PTPN11 mutations result in an increased malignancy risk. We have performed a cohort study among 297 Dutch NS patients with a PTPN11 mutation (mean age 18 years). The cancer histories were collected from the referral forms for DNA diagnostics, and by consulting the Dutch national registry of pathology and the Netherlands Cancer Registry. The reported frequencies of cancer among NS patients were compared with the expected frequencies using population-based incidence rates. In total, 12 patients with NS developed a malignancy, providing a cumulative risk for developing cancer of 23% (95% confidence interval (CI), 8–38%) up to age 55 years, which represents a 3.5-fold (95% CI, 2.0–5.9) increased risk compared with that in the general population. Hematological malignancies occurred most frequently. Two malignancies, not previously observed in NS, were found: a malignant mastocytosis and malignant epithelioid angiosarcoma. No correlation was found between specific PTPN11 mutations and cancer occurrence. In conclusion, this study provides first evidence of an increased risk of cancer in patients with NS and a PTPN11 mutation, compared with that in the general population. Our data do not warrant specific cancer surveillance
    corecore