12,868 research outputs found
Simplified SIMPs and the LHC
The existence of Dark Matter (DM) in the form of Strongly Interacting Massive
Particles (SIMPs) may be motivated by astrophysical observations that challenge
the classical Cold DM scenario. Other observations greatly constrain, but do
not completely exclude, the SIMP alternative. The signature of SIMPs at the LHC
may consist of neutral, hadron-like, trackless jets produced in pairs. We show
that the absence of charged content can provide a very efficient tool to
suppress dijet backgrounds at the LHC, thus enhancing the sensitivity to a
potential SIMP signal. We illustrate this using a simplified SIMP model and
present a detailed feasibility study based on simulations, including a
dedicated detector response parametrization. We evaluate the expected
sensitivity to various signal scenarios and tentatively consider the exclusion
limits on the SIMP elastic cross section with nucleons.Comment: 18 pages, 7 figure
Dipole-dipole interaction between orthogonal dipole moments in time-dependent geometries
In two nearby atoms, the dipole-dipole interaction can couple transitions
with orthogonal dipole moments. This orthogonal coupling accounts for a number
of interesting effects, but strongly depends on the geometry of the setup.
Here, we discuss several setups of interest where the geometry is not fixed,
such as particles in a trap or gases, by averaging over different sets of
geometries. Two averaging methods are compared. In the first method, it is
assumed that the internal electronic evolution is much faster than the change
of geometry, whereas in the second, it is vice versa. We find that the
orthogonal coupling typically survives even extensive averaging over different
geometries, albeit with qualitatively different results for the two averaging
methods. Typically, one- and two-dimensional averaging ranges modelling, e.g.,
low-dimensional gases, turn out to be the most promising model systems.Comment: 11 pages, 14 figure
Spin dynamics in the ordered spin ice TbSnO
Geometrical frustration is a central challenge in contemporary condensed
matter physics, a crucible favourable to the emergence of novel physics. The
pyrochlore magnets, with rare earth magnetic moments localized at the vertices
of corner-sharing tetrahedra, play a prominent role in this field, with a rich
variety of exotic ground states ranging from the "spin ices" \hoti\ and \dyti\
to the "spin liquid" and "ordered spin ice" ground states in \tbti\ and \tbsn.
Inelastic neutron scattering provides valuable information for understanding
the nature of these ground states, shedding light on the crystal electric field
(CEF) level scheme and on the interactions between magnetic moments. We have
performed such measurements with unprecedented neutron flux and energy
resolution, in the "ordered spin ice" \tbsn. We argue that a new interaction,
which involves the spin lattice coupling through a low temperature distortion
of the trigonal crystal field, is necessary to account for the data
Gear tooth topological modification
The topology of parallel axis gears, such as spur and helical gears is modified to produce quieter and more smoothly operating gear sets with more uniform load distribution. A finite element analysis of the gear in its operating mode is made to produce a plot of radial and tangential deflections of the pinion and gear tooth surfaces which will occur when the gears are loaded during operation. The resultant plot is then inverted to produce a plot, or set of coordinates, which will define the path of travel of the gear tooth grinding wheel, which path is a mirror image of the plot of the finite element analysis. The resulting gears, when subjected to operating loads, will thus be deflected tangentially and radially to their optimum operating, or theoretical true involute, positions so as to produce quieter, smoother, and more evenly loaded gear trains
Spatiotemporal chaos induces extreme events in an extended microcavity laser
Extreme events such as rogue wave in optics and fluids are often associated
with the merging dynamics of coherent structures. We present experimental and
numerical results on the physics of extreme events appearance in a spatially
extended semiconductor microcavity laser with intracavity saturable absorber.
This system can display deterministic irregular dynamics only thanks to spatial
coupling through diffraction of light. We have identified parameter regions
where extreme events are encountered and established the origin of this
dynamics in the emergence of deterministic spatiotemporal chaos, through the
correspondence between the proportion of extreme events and the dimension of
the strange attractor
- …
