12,868 research outputs found

    Simplified SIMPs and the LHC

    Full text link
    The existence of Dark Matter (DM) in the form of Strongly Interacting Massive Particles (SIMPs) may be motivated by astrophysical observations that challenge the classical Cold DM scenario. Other observations greatly constrain, but do not completely exclude, the SIMP alternative. The signature of SIMPs at the LHC may consist of neutral, hadron-like, trackless jets produced in pairs. We show that the absence of charged content can provide a very efficient tool to suppress dijet backgrounds at the LHC, thus enhancing the sensitivity to a potential SIMP signal. We illustrate this using a simplified SIMP model and present a detailed feasibility study based on simulations, including a dedicated detector response parametrization. We evaluate the expected sensitivity to various signal scenarios and tentatively consider the exclusion limits on the SIMP elastic cross section with nucleons.Comment: 18 pages, 7 figure

    Dipole-dipole interaction between orthogonal dipole moments in time-dependent geometries

    Full text link
    In two nearby atoms, the dipole-dipole interaction can couple transitions with orthogonal dipole moments. This orthogonal coupling accounts for a number of interesting effects, but strongly depends on the geometry of the setup. Here, we discuss several setups of interest where the geometry is not fixed, such as particles in a trap or gases, by averaging over different sets of geometries. Two averaging methods are compared. In the first method, it is assumed that the internal electronic evolution is much faster than the change of geometry, whereas in the second, it is vice versa. We find that the orthogonal coupling typically survives even extensive averaging over different geometries, albeit with qualitatively different results for the two averaging methods. Typically, one- and two-dimensional averaging ranges modelling, e.g., low-dimensional gases, turn out to be the most promising model systems.Comment: 11 pages, 14 figure

    Spin dynamics in the ordered spin ice Tb2_2Sn2_2O7_7

    Full text link
    Geometrical frustration is a central challenge in contemporary condensed matter physics, a crucible favourable to the emergence of novel physics. The pyrochlore magnets, with rare earth magnetic moments localized at the vertices of corner-sharing tetrahedra, play a prominent role in this field, with a rich variety of exotic ground states ranging from the "spin ices" \hoti\ and \dyti\ to the "spin liquid" and "ordered spin ice" ground states in \tbti\ and \tbsn. Inelastic neutron scattering provides valuable information for understanding the nature of these ground states, shedding light on the crystal electric field (CEF) level scheme and on the interactions between magnetic moments. We have performed such measurements with unprecedented neutron flux and energy resolution, in the "ordered spin ice" \tbsn. We argue that a new interaction, which involves the spin lattice coupling through a low temperature distortion of the trigonal crystal field, is necessary to account for the data

    Gear tooth topological modification

    Get PDF
    The topology of parallel axis gears, such as spur and helical gears is modified to produce quieter and more smoothly operating gear sets with more uniform load distribution. A finite element analysis of the gear in its operating mode is made to produce a plot of radial and tangential deflections of the pinion and gear tooth surfaces which will occur when the gears are loaded during operation. The resultant plot is then inverted to produce a plot, or set of coordinates, which will define the path of travel of the gear tooth grinding wheel, which path is a mirror image of the plot of the finite element analysis. The resulting gears, when subjected to operating loads, will thus be deflected tangentially and radially to their optimum operating, or theoretical true involute, positions so as to produce quieter, smoother, and more evenly loaded gear trains

    Setting up sustainable dairy business hubs: A resource book for facilitators

    Get PDF

    Spatiotemporal chaos induces extreme events in an extended microcavity laser

    Full text link
    Extreme events such as rogue wave in optics and fluids are often associated with the merging dynamics of coherent structures. We present experimental and numerical results on the physics of extreme events appearance in a spatially extended semiconductor microcavity laser with intracavity saturable absorber. This system can display deterministic irregular dynamics only thanks to spatial coupling through diffraction of light. We have identified parameter regions where extreme events are encountered and established the origin of this dynamics in the emergence of deterministic spatiotemporal chaos, through the correspondence between the proportion of extreme events and the dimension of the strange attractor
    corecore