3,926 research outputs found

    Interacting topological phases and modular invariance

    Full text link
    We discuss a (2+1) dimensional topological superconductor with NfN_f left- and right-moving Majorana edge modes and a Z2Ă—Z2\mathbb{Z}_2\times \mathbb{Z}_2 symmetry. In the absence of interactions, these phases are distinguished by an integral topological invariant NfN_f. With interactions, the edge state in the case Nf=8N_f=8 is unstable against interactions, and a Z2Ă—Z2\mathbb{Z}_2\times \mathbb{Z}_2 invariant mass gap can be generated dynamically. We show that this phenomenon is closely related to the modular invariance of type II superstring theory. More generally, we show that the global gravitational anomaly of the non-chiral Majorana edge states is the physical manifestation of the bulk topological superconductors classified by Z8\mathbb{Z}_8.Comment: 11 page

    Kondo effect in quantum dots coupled to ferromagnetic leads

    Full text link
    We study the Kondo effect in a quantum dot which is coupled to ferromagnetic leads and analyse its properties as a function of the spin polarization of the leads. Based on a scaling approach we predict that for parallel alignment of the magnetizations in the leads the strong-coupling limit of the Kondo effect is reached at a finite value of the magnetic field. Using an equation-of-motion technique we study nonlinear transport through the dot. For parallel alignment the zero-bias anomaly may be split even in the absence of an external magnetic field. For antiparallel spin alignment and symmetric coupling, the peak is split only in the presence of a magnetic field, but shows a characteristic asymmetry in amplitude and position.Comment: 5 pages, 2 figure

    A comprehensive thermodynamic model for temperature change in i-caloric effects

    Full text link
    Solid-state cooling based on i-caloric effects may be an alternative to conventional vapor-compression refrigeration systems. The adiabatic temperature change (ΔTS\Delta T_{S}) is one of the parameters that characterize the i-caloric effects, therefore it is important to obtain the correct ΔTS\Delta T_{S} values and, whenever possible, to correlate this parameter with thermodynamic and microscopic quantities. In this work, we propose a comprehensive thermodynamic model that allows us to determine the adiabatic temperature change from non-adiabatic measurements of temperature change induced by a field change. Our model fits efficiently temperature versus time and temperature change versus the inverse of the field change rate data for three different materials presenting different i-caloric effects. The results indicate the present model is a very useful and robust tool to obtain the correct ΔTS\Delta T_{S} values and to correlate ΔTS\Delta T_{S} with other thermodynamic quantities.Comment: 13 pages, 3 figures, 1 tabl

    Baryons and String Creation from the Fivebrane Worldvolume Action

    Get PDF
    We construct BPS-exact solutions of the worldvolume Born-Infeld plus WZW action of a D5-brane in the background of N D3-branes. The non-trivial background metric and RR five-form field strength play a crucial role in the solution. When a D5-brane is dragged across a stack of N D3-branes a bundle of N fundamental strings joining the two types of branes is created, as in the Hanany-Witten effect. Our solutions give a detailed description of this bundle in terms of a D5-brane wrapped on a sphere. We discuss extensions of these solutions which have an interpretation in terms of gauge theory multi-quark states via the AdS/CFT correspondence.Comment: LaTeX, 18 pages, 5 eps figures; v2: added reference which had been inadvertently omitte

    Supergiant Barocaloric Effects in Acetoxy Silicone Rubber over a Wide Temperature Range: Great Potential for Solid-state Cooling

    Get PDF
    Solid-state cooling based on caloric effects is considered a viable alternative to replace the conventional vapor-compression refrigeration systems. Regarding barocaloric materials, recent results show that elastomers are promising candidates for cooling applications around room-temperature. In the present paper, we report supergiant barocaloric effects observed in acetoxy silicone rubber - a very popular, low-cost and environmentally friendly elastomer. Huge values of adiabatic temperature change and reversible isothermal entropy change were obtained upon moderate applied pressures and relatively low strains. These huge barocaloric changes are associated both to the polymer chains rearrangements induced by confined compression and to the first-order structural transition. The results are comparable to the best barocaloric materials reported so far, opening encouraging prospects for the application of elastomers in near future solid-state cooling devices.Comment: 19 pages, 7 figures, 2 table

    Vertically coupled double quantum dots in magnetic fields

    Full text link
    Ground-state and excited-state properties of vertically coupled double quantum dots are studied by exact diagonalization. Magic-number total angular momenta that minimize the total energy are found to reflect a crossover between electron configurations dominated by intra-layer correlation and ones dominated by inter-layer correlation. The position of the crossover is governed by the strength of the inter-layer electron tunneling and magnetic field. The magic numbers should have an observable effect on the far infra-red optical absorption spectrum, since Kohn's theorem does not hold when the confinement potential is different for two dots. This is indeed confirmed here from a numerical calculation that includes Landau level mixing. Our results take full account of the effect of spin degrees of freedom. A key feature is that the total spin, SS, of the system and the magic-number angular momentum are intimately linked because of strong electron correlation. Thus SS jumps hand in hand with the total angular momentum as the magnetic field is varied. One important consequence of this is that the spin blockade (an inhibition of single-electron tunneling) should occur in some magnetic field regions because of a spin selection rule. Owing to the flexibility arising from the presence of both intra-layer and inter-layer correlations, the spin blockade is easier to realize in double dots than in single dots.Comment: to be published in Phys. Rev. B1

    Effect of exchange interaction on fidelity of quantum state transfer from a photon qubit to an electron-spin qubit

    Get PDF
    We analyzed the fidelity of the quantum state transfer (QST) from a photon-polarization qubit to an electron-spin-polarization qubit in a semiconductor quantum dot, with special attention to the exchange interaction between the electron and the simultaneously created hole. In order to realize a high-fidelity QST we had to separate the electron and hole as soon as possible, since the electron-hole exchange interaction modifies the orientation of the electron spin. Thus, we propose a double-dot structure to separate the electron and hole quickly, and show that the fidelity of the QST can reach as high as 0.996 if the resonant tunneling condition is satisfied.Comment: 5 pages, 4 figures, to be published in Phys. Rev. B Rapid Communication
    • …
    corecore