551 research outputs found

    Optimization of a genomic editing system using CRISPR/Cas9-induced site-specific gene integration

    Get PDF
    The CRISPR-Cas system is an adaptive immune system found in bacteria which helps protect against the invasion of other microorganisms. This system induces double stranded breaks at precise genomic loci (1) in which repairs are initiated and insertions of a target are completed in the process. This mechanism can be used in eukaryotic cells in combination with sgRNAs (1) as a tool for genome editing. By using this CRISPR-Cas system, in addition to the “safe harbor locus,” ROSAÎČ26, the incorporation of a target gene into a site that is not susceptible to gene silencing effects can be achieved through few simple steps. PCR amplification of the target genes , ROSA26 and mKate2, with a sgRNA scaffold and T7 promoter followed by in vitro transcription aim to produce an RNA product. This sgRNA product can be run through a digestion with Cas9 to validate cleavage of the genomic ROSA DNA template or mKate plasmid. Osteoblast mouse cells are transfected and labeled through partial uptake by the CRISPR mechanism, by cutting in the ROSA loci and repairing with pieces of the fluorescent mKate2 plasmid. These cells were measured via flow cytometry to give a percentage of red cells. This data shows the scaffolding construct created is targeted by the Cas9 endonuclease and through homologous repair the cells will incorporate the mKate2 target gene in vitro in MC3T3 mouse cells

    SOST Inhibits Prostate Cancer Invasion.

    Get PDF
    Inhibitors of Wnt signaling have been shown to be involved in prostate cancer (PC) metastasis; however the role of Sclerostin (Sost) has not yet been explored. Here we show that elevated Wnt signaling derived from Sost deficient osteoblasts promotes PC invasion, while rhSOST has an inhibitory effect. In contrast, rhDKK1 promotes PC elongation and filopodia formation, morphological changes characteristic of an invasive phenotype. Furthermore, rhDKK1 was found to activate canonical Wnt signaling in PC3 cells, suggesting that SOST and DKK1 have opposing roles on Wnt signaling in this context. Gene expression analysis of PC3 cells co-cultured with OBs exhibiting varying amounts of Wnt signaling identified CRIM1 as one of the transcripts upregulated under highly invasive conditions. We found CRIM1 overexpression to also promote cell-invasion. These findings suggest that bone-derived Wnt signaling may enhance PC tropism by promoting CRIM1 expression and facilitating cancer cell invasion and adhesion to bone. We concluded that SOST and DKK1 have opposing effects on PC3 cell invasion and that bone-derived Wnt signaling positively contributes to the invasive phenotypes of PC3 cells by activating CRIM1 expression and facilitating PC-OB physical interaction. As such, we investigated the effects of high concentrations of SOST in vivo. We found that PC3-cells overexpressing SOST injected via the tail vein in NSG mice did not readily metastasize, and those injected intrafemorally had significantly reduced osteolysis, suggesting that targeting the molecular bone environment may influence bone metastatic prognosis in clinical settings

    152 Hsp90 AND p130cas: NOVEL REGULATORY FACTORS OF MMP-13 EXPRESSION IN HUMAN OSTEOARTHRITIC CHONDROCYTES

    Get PDF

    Pseudomonas Aeruginosa-Derived Rhamnolipids and Other Detergents Modulate Colony Morphotype and Motility in the Burkholderia Cepacia Complex

    Get PDF
    Competitive interactions mediated by released chemicals (e.g., toxins) are prominent in multispecies communities, but the effects of these chemicals at subinhibitory concentrations on susceptible bacteria are poorly understood. Although Pseudomonas aeruginosa and species of the Burkholderia cepacia complex (Bcc) can exist together as a coinfection in cystic fibrosis airways, P. aeruginosa toxins can kill Bcc species in vitro. Consequently, these bacteria become an ideal in vitro model system to study the impact of sublethal levels of toxins on the biology of typical susceptible bacteria, such as the Bcc, when exposed to P. aeruginosa toxins. Using P. aeruginosa spent medium as a source of toxins, we showed that a small window of subinhibitory concentrations modulated the colony morphotype and swarming motility of some but not all tested Bcc strains, for which rhamnolipids were identified as the active molecule. Using a random transposon mutagenesis approach, we identified several genes required by the Bcc to respond to low concentrations of rhamnolipids and consequently affect the ability of this microbe to change its morphotype and swarm over surfaces. Among those genes identified were those coding for type IVb-Tad pili, which are often required for virulence in various bacterial pathogens. Our study demonstrates that manipulating chemical gradients in vitro can lead to the identification of bacterial behaviors relevant to polymicrobial infections

    Canadian epilepsy priority-setting partnership: Toward a new national research agenda

    Get PDF
    Background: Health research agendas are often set by researchers or by industry and may not reflect the needs and priorities of end users. This priority-setting partnership (PSP) for epilepsy was undertaken to identify the most pressing unanswered questions about epilepsy and seizures from the perspective of people with epilepsy (PWE) and their care providers. Methods: Using the methodology developed by the James Lind Alliance (JLA), evidence uncertainties were gathered via online surveys from stakeholders across Canada. Submissions were formed into summary questions and checked against existing evidence to determine if they were true uncertainties. Verified uncertainties were then ranked by patients, caregivers, and healthcare providers and a final workshop was held to reach a consensus on the top 10 priorities. Results: The final top 10 list reflects the priority areas of focus for research as identified by the Canadian epilepsy community, including genetic markers for diagnosis and treatment, concerns about living with the long-term effects of epilepsy, and addressing knowledge gaps in etiology and treatment approaches. Conclusion: This project represents the first systematic evidence of patient- and clinician-centered research priorities for epilepsy. The results of this priority-setting exercise provide an opportunity for researchers and funding agencies to align their agendas with the values and needs of the epilepsy community in order to improve clinical outcomes and quality of life (QOL) for PWE

    Sostdc1 deficiency accelerates fracture healing by promoting the expansion of periosteal mesenchymal stem cells

    Get PDF
    Loss of Sostdc1, a growth factor paralogous to Sost, causes the formation of ectopic incisors, fused molars, abnormal hair follicles, and resistance to kidney disease. Sostdc1 is expressed in the periosteum, a source of osteoblasts, fibroblasts and mesenchymal progenitor cells, which are critically important for fracture repair. Here, we investigated the role of Sostdc1 in bone metabolism and fracture repair. Mice lacking Sostdc1 (Sostdc1−/−) had a low bone mass phenotype associated with loss of trabecular bone in both lumbar vertebrae and in the appendicular skeleton. In contrast, Sostdc1−/− cortical bone measurements revealed larger bones with higher BMD, suggesting that Sostdc1 exerts differential effects on cortical and trabecular bone. Mid-diaphyseal femoral fractures induced in Sostdc1−/− mice showed that the periosteal population normally positive for Sostdc1 rapidly expands during periosteal thickening and these cells migrate into the fracture callus at 3 days post fracture. Quantitative analysis of mesenchymal stem cell (MSC) and osteoblast populations determined that MSCs express Sostdc1, and that Sostdc1−/− 5 day calluses harbor > 2-fold more MSCs than fractured wildtype controls. Histologically a fraction of Sostdc1-positive cells also expressed nestin and α-smooth muscle actin, suggesting that Sostdc1 marks a population of osteochondral progenitor cells that actively participate in callus formation and bone repair. Elevated numbers of MSCs in D5 calluses resulted in a larger, more vascularized cartilage callus at day 7, and a more rapid turnover of cartilage with significantly more remodeled bone and a thicker cortical shell at 21 days post fracture. These data support accelerated or enhanced bone formation/remodeling of the callus in Sostdc1−/− mice, suggesting that Sostdc1 may promote and maintain mesenchymal stem cell quiescence in the periosteum

    Conditional Deletion of Sost in MSC‐derived lineages Identifies Specific Cell Type Contributions to Bone Mass and B Cell Development

    Get PDF
    Sclerostin (Sost) is a negative regulator of bone formation and blocking its function via antibodies has shown great therapeutic promise by increasing both bone mass in humans and animal models. Sclerostin deletion in Sost knockout mice (Sost‐/‐) causes high bone mass (HBM) similar to Sclerosteosis patients. Sost‐/‐ mice have been shown to display an up to 300% increase in bone volume/total volume (BV/TV), relative to aged matched controls, and it has been postulated that the main source of skeletal Sclerostin is the osteocyte. To understand the cell‐type specific contributions to the HBM phenotype described in Sost‐/‐ mice, as well as to address the endocrine and paracrine mode of action of sclerostin, we examined the skeletal phenotypes of conditional Sost loss‐of‐function (SostiCOIN/iCOIN) mice with specific deletions in (1) the limb mesenchyme (Prx1‐Cre; targets osteoprogenitors and their progeny); (2) mid‐stage osteoblasts and their progenitors (Col1‐Cre); (3) mature osteocytes (Dmp1‐Cre) and (4) hypertrophic chondrocytes and their progenitors (ColX‐Cre). All conditional alleles resulted in significant increases in bone mass in trabecular bone in both the femur and lumbar vertebrae, but only Prx1‐Cre deletion fully recapitulated the amplitude of the HBM phenotype in the appendicular skeleton and the B cell defect described in the global knockout. Despite wildtype expression of Sost in the axial skeleton of Prx1‐Cre deleted mice, these mice also had a significant increase in bone mass in the vertebrae, but the Sclerostin released in circulation by the axial skeleton did not affect bone parameters in the appendicular skeleton. Also, both Col1 and Dmp1 deletion resulted in a similar 80% significant increase in trabecular bone mass, but only Col1 and Prx1 deletion resulted in a significant increase in cortical thickness. We conclude that several cell types within the Prx1‐osteoprogenitor derived lineages contribute significant amounts of Sclerostin protein to the paracrine pool of Sost, in bone
    • 

    corecore