96 research outputs found

    Mechanisms of goethite dissolution in the presence of desferrioxamine B and Suwannee River fulvic acid at pH 6.5

    Get PDF
    Siderophores are Fe3+ specific low MW chelating ligands secreted by microorganisms in response to Fe stress. Low MW organic acids such as oxalate have been shown to enhance siderophore mediated dissolution of Fe3+ oxides. However, the effect of fulvic acid presence on siderophore function remains unknown. We used batch dissolution experiments to investigate Fe release from goethite in the goethite-fulvic acid desferrioxamine B (goethite-SRFA-DFOB) ternary system. Experiments were conducted at pH 6.5 while varying reagent addition sequence. FTIR and UV-Vis spectroscopy were employed to characterise the Fe-DFOB, Fe-SRFA and DFOB–SRFA complexes. Iron released from goethite in the presence of SRFA alone was below detection limit. In the presence of both SRFA and DFOB, dissolved Fe increased with reaction time, presence of the DFOB-SRFA complex, and where SRFA was introduced prior to DFOB. FTIR data show that in the ternary system, Fe3+ is complexed primarily to oxygen of the DFOB hydroxamate group, whilst the carboxylate C=O of SRFA forms an electrostatic association with the terminal NH3+ of DFOB. We propose that SRFA sorbed to goethite lowers the net positive charge of the oxide surface, thus facilitating adsorption of cationic DFOB and subsequent Fe3+ chelation and release. Furthermore, the sorbed SRFA weakens Fe-O bonds at the goethite surface, increasing the population of kinetically labile Fe. This work demonstrates the positive, though indirect role of SRFA in increasing the bioavailability of Fe3+

    identifying patients with relapsing remitting multiple sclerosis using algorithms applied to us integrated delivery network healthcare data

    Get PDF
    Abstract Background Relapsing-remitting multiple sclerosis (RRMS) has a major impact on affected patients; therefore, improved understanding of RRMS is important, particularly in the context of real-world evidence. Objectives To develop and validate algorithms for identifying patients with RRMS in both unstructured clinical notes found in electronic health records (EHRs) and structured/coded health care claims data. Methods US Integrated Delivery Network data (2010–2014) were queried for study inclusion criteria (possible multiple sclerosis [MS] base cohort): one or more MS diagnosis code, patients aged 18 years or older, 1 year or more baseline history, and no other demyelinating diseases. Sets of algorithms were developed to search narrative text of unstructured clinical notes (EHR clinical notes–based algorithms) and structured/coded data (claims-based algorithms) to identify adult patients with RRMS, excluding patients with evidence of progressive MS. Medical records were reviewed manually for algorithm validation. Positive predictive value was calculated for both EHR clinical notes–based and claims-based algorithms. Results From a sample of 5308 patients with possible MS, 837 patients with RRMS were identified using only the EHR clinical notes–based algorithms and 2271 patients were identified using only the claims-based algorithms; 779 patients were identified using both algorithms. The positive predictive value was 99.1% (95% confidence interval [CI], 94.2%–100%) for the EHR clinical notes–based algorithms and 94.6% (95% CI, 89.1%–97.8%) to 94.9% (95% CI, 89.8%–97.9%) for the claims-based algorithms. Conclusions The algorithms evaluated in this study identified a real-world cohort of patients with RRMS without evidence of progressive MS that can be studied in clinical research with confidence

    Tobacco use and caries risk among adolescents - a longitudinal study in Sweden

    Get PDF
    Background: Smoking and the use of smokeless tobacco have a detrimental impact on general and oral health. The relationship to dental caries is however still unclear. As caries is a multi-factorial disease with clear life-style, socio-economic and socio-demographic gradients, the tobacco use may be a co-variable in this complex rather than a direct etiological factor. Our aim was to analyze the impact of tobacco use on caries incidence among adolescents, with consideration to socio-economic variables by residency, using epidemiological data from a longitudinal study in the region of Halland, Sweden. Methods: The study population consisted of 10,068 adolescents between 16-19 years of age from whom yearly data on caries and tobacco use (cigarette smoking and use of smokeless tobacco) were obtained during the period 2006-2012. Reported DMFS increment between 16 and 19 years of age (Delta DMFS) for an individual was considered as the primary caries outcome. The outcome data were compared for self-reported never vs. ever users of tobacco, with consideration to neighborhood-level socio-economy (4 strata), baseline (i.e., 16 years of age) DMFS and sex. The region consists of 65 parishes with various socio-economic conditions and each study individual was geo-coded with respect to his/her residence parish. Neighborhood (parish-level) socio-economy was assessed by proportion of residing families with low household purchasing power. Results:Delta DMFS differed evidently between ever and never users of tobacco (mean values: 1.8 vs. 1.2; proportion with Delta DMFS > 0: 54.2% vs. 40.5%; p < 0.0001). Significant differences were observed in each neighborhood-level socio-economic stratum. Even after controlling for baseline DMFS and sex, Delta DMFS differed highly significantly between the ever and never users of tobacco (overall p < 0.0001). Conclusion: Tobacco use was clearly associated with increased caries increment during adolescence. Hence, this factor is relevant to consider in the clinical caries risk assessment of the individual patient as well as for community health plans dealing with oral health

    Expanding the cerebrospinal fluid endopeptidome

    Get PDF
    Biomarkers of neurodegenerative disorders are needed to assist in diagnosis, to monitor disease progression and therapeutic interventions, and to provide insight into disease mechanisms. One route to identify such biomarkers is by proteomic and peptidomic analysis of cerebrospinal fluid (CSF). In the current study, we performed an in-depth analysis of the human CSF endopeptidome to establish an inventory that may serve as a basis for future targeted biomarker studies. High-pH RP HPLC was employed for off-line sample prefractionation followed by low-pH nano-LC-MS analysis. Different software programs and scoring algorithms for peptide identification were employed and compared. A total of 18 031 endogenous peptides were identified at a FDR of 1%, increasing the number of known endogenous CSF peptides 10-fold compared to previous studies. The peptides were derived from 2 053 proteins of which more than 60 have been linked to neurodegeneration. Notably, among the findings were six peptides derived from microtubule-associated protein tau, three of which span the diagnostically interesting threonine-181 (Tau-F isoform). Also, 213 peptides from amyloid precursor protein were identified, 58 of which were partially or completely within the sequence of amyloid β 1-40/42, as well as 109 peptides from apolipoprotein E, spanning sequences that discriminate between the E2/E3/E4 isoforms of the protein

    Adsorption of hydroxamate siderophores and EDTA on goethite in the presence of the surfactant sodium dodecyl sulfate

    Get PDF
    Siderophore-promoted iron acquisition by microorganisms usually occurs in the presence of other organic molecules, including biosurfactants. We have investigated the influence of the anionic surfactant sodium dodecyl sulfate (SDS) on the adsorption of the siderophores DFOB (cationic) and DFOD (neutral) and the ligand EDTA (anionic) onto goethite (α-FeOOH) at pH 6. We also studied the adsorption of the corresponding 1:1 Fe(III)-ligand complexes, which are products of the dissolution process. Adsorption of the two free siderophores increased in a similar fashion with increasing SDS concentration, despite their difference in molecule charge. In contrast, SDS had little effect on the adsorption of EDTA. Adsorption of the Fe-DFOB and Fe-DFOD complexes also increased with increasing SDS concentrations, while adsorption of Fe-EDTA decreased. Our results suggest that hydrophobic interactions between adsorbed surfactants and siderophores are more important than electrostatic interactions. However, for strongly hydrophilic molecules, such as EDTA and its iron complex, the influence of SDS on their adsorption seems to depend on their tendency to form inner-sphere or outer-sphere surface complexes. Our results demonstrate that surfactants have a strong influence on the adsorption of siderophores to Fe oxides, which has important implications for siderophore-promoted dissolution of iron oxides and biological iron acquisition

    The effect of pH, grain size, and organic ligands on biotite weathering rates

    Get PDF
    Biotite dissolution rates were determined at 25 °C, at pH 2–6, and as a function of mineral composition, grain size, and aqueous organic ligand concentration. Rates were measured using both open- and closed-system reactors in fluids of constant ionic strength. Element release was non-stoichiometric and followed the general trend of Fe, Mg > Al > Si. Biotite surface area normalised dissolution rates (ri) in the acidic range, generated from Si release, are consistent with the empirical rate law: ri=kH,iaxiH+ where kH,i refers to an apparent rate constant, aH+ designates the activity of protons, and xi stands for a reaction order with respect to protons. Rate constants range from 2.15 × 10−10 to 30.6 × 10−10 (molesbiotite m−2 s−1) with reaction orders ranging from 0.31 to 0.58. At near-neutral pH in the closed-system experiments, the release of Al was stoichiometric compared to Si, but Fe was preferentially retained in the solid phase, possibly as a secondary phase. Biotite dissolution was highly spatially anisotropic with its edges being ∼120 times more reactive than its basal planes. Low organic ligand concentrations slightly enhanced biotite dissolution rates. These measured rates illuminate mineral–fluid–organism chemical interactions, which occur in the natural environment, and how organic exudates enhance nutrient mobilisation for microorganism acquisition

    Rapid fucosylation of intestinal epithelium sustains host–commensal symbiosis in sickness

    Get PDF
    Systemic infection induces conserved physiological responses that include both resistance and ‘tolerance of infection’ mechanisms. Temporary anorexia associated with an infection is often beneficial, reallocating energy from food foraging towards resistance to infection or depriving pathogens of nutrients. However, it imposes a stress on intestinal commensals, as they also experience reduced substrate availability; this affects host fitness owing to the loss of caloric intake and colonization resistance (protection from additional infections). We hypothesized that the host might utilize internal resources to support the gut microbiota during the acute phase of the disease. Here we show that systemic exposure to Toll-like receptor (TLR) ligands causes rapid α(1,2)-fucosylation of small intestine epithelial cells (IECs) in mice, which requires the sensing of TLR agonists, as well as the production of interleukin (IL)-23 by dendritic cells, activation of innate lymphoid cells and expression of fucosyltransferase 2 (Fut2) by IL-22-stimulated IECs. Fucosylated proteins are shed into the lumen and fucose is liberated and metabolized by the gut microbiota, as shown by reporter bacteria and community-wide analysis of microbial gene expression. Fucose affects the expression of microbial metabolic pathways and reduces the expression of bacterial virulence genes. It also improves host tolerance of the mild pathogen Citrobacter rodentium. Thus, rapid IEC fucosylation appears to be a protective mechanism that utilizes the host’s resources to maintain host–microbial interactions during pathogen-induced stress

    Electronic Spectra and Transition Moments of 6-(2’-Pyridiniumyl)phenanthridinium Photoactive DNA Intercalators

    No full text
    The electronic transitions giving rise to the UV-visible absorption spectra of two pyridinium-phenanthridinium viologens, 6,7-dihydropyridol[2',1':3,4]pyrazinol[1,2-f]phenanthridinediium dication (1) and 7,8-dihydro-6H-pyrido[2',1':3,4]diazepino[1,2-f]phenanthridinediium dication (2), have been investigated with respect to energies, intensities, and transition moment directions. A combination of methods has been applied: UV-visible absorption, circular dichroism, magnetic circular dichroism, fluorescence anisotropy, Linear dichroism In stretched poly(vinyl alcohol) films, and semiempirical molecular orbital calculations. For both drugs, the lowest energy absorption band, occurring around 400 nm, results from two separate transitions. The corresponding electric transition dipole moments lie in the phenanthridine plane and are polarized, respectively, in the direction of the pyridine moiety (the lower energy transition) and parallel to the phenanthridine long axis (the higher energy transition). Up to four additional different pi --> pi* transitions account for a second band that peaks at 250 nm; they show different polarizations within the phenanthridine plane. The lowest energy transition of the whole spectrum of both drugs corresponds to the promotion of an electron from the HOMO to the LUMO, which are molecular orbitals mainly localized in the phenanthridine and pyridine rings, respectively, thereby implying a charge transfer, upon excitation, from the phenanthridine toward the pyridine ring. The experimental and theoretical results are discussed in relation to the spectroscopic, redox, and photochemical properties of these drugs
    • …
    corecore