4,691 research outputs found

    320g Ionization-Heat Cryogenic Detector for Dark Matter Search in the EDELWEISS Experiment

    Full text link
    The EDELWEISS experiment used in 2001 a 320g heat-and-ionization cryogenic Ge detector operated in a low-background environment in the Laboratoire Souterrain de Modane for direct WIMP detection. This detector presents an increase of more than 4 times the mass of previous detectors. Calibrations of this detector are used to determine its energy resolution and fiducial volume, and to optimize the detector design for the 1kg phase of the EDELWEISS-I experiment. Analysis of the calibrations and characteristics of a first series of 320g-detectors are presented.Comment: 4 pages, 3 figure

    Phosphorylation of CENP-A on serine 7 does not control centromere function

    Get PDF
    CENP-A is the histone H3 variant necessary to specify the location of all eukaryotic centromeres via its CENP-A targeting domain and either one of its terminal regions. In humans, several post-translational modifications occur on CENP-A, but their role in centromere function remains controversial. One of these modifications of CENP-A, phosphorylation on serine 7, has been proposed to control centromere assembly and function. Here, using gene targeting at both endogenous CENP-A alleles and gene replacement in human cells, we demonstrate that a CENP-A variant that cannot be phosphorylated at serine 7 maintains correct CENP-C recruitment, faithful chromosome segregation and long-term cell viability. Thus, we conclude that phosphorylation of CENP-A on serine 7 is dispensable to maintain correct centromere dynamics and function

    Simultaneous X-ray and optical spectroscopy of the Oef supergiant lambda Cep

    Full text link
    Probing the structures of stellar winds is of prime importance for the understanding of massive stars. Based on their optical spectral morphology and variability, the stars of the Oef class have been suggested to feature large-scale structures in their wind. High-resolution X-ray spectroscopy and time-series of X-ray observations of presumably-single O-type stars can help us understand the physics of their stellar winds. We have collected XMM-Newton observations and coordinated optical spectroscopy of the O6Ief star lambda Cep to study its X-ray and optical variability and to analyse its high-resolution X-ray spectrum. We investigate the line profile variability of the He II 4686 and H-alpha emission lines in our time series of optical spectra, including a search for periodicities. We further discuss the variability of the broadband X-ray flux and analyse the high-resolution spectrum of lambda Cep using line-by-line fits as well as a code designed to fit the full high-resolution X-ray spectrum consistently. During our observing campaign, the He II 4686 line varies on a timescale of ~18 hours. On the contrary, the H-alpha line profile displays a modulation on a timescale of 4.1 days which is likely the rotation period of the star. The X-ray flux varies on time-scales of days and could in fact be modulated by the same 4.1 days period as H-alpha, although both variations are shifted in phase. The high-resolution X-ray spectrum reveals broad and skewed emission lines as expected for the X-ray emission from a distribution of wind-embedded shocks. Most of the X-ray emission arises within less than 2R* above the photosphere.Comment: Accepted for publication in Astronomy & Astrophysic

    Masses and age of the Chemically Peculiar double-lined binary χ\chi~Lupi

    No full text
    8 pages, accepted in AandAWe aim at measuring the stellar parameters of the two Chemically Peculiar components of the B9.5Vp HgMn + A2 Vm double-lined spectroscopic binary HD141556, whose period is 15.2515.25~days. We combined historical radial velocity measurements with new spatially resolved astrometric observations from PIONIER/VLTI to reconstruct the three-dimensional orbit of the binary, and thus obtained the individual masses. We fit the available photometric points together with the flux ratios provided by interferometry to constrain the individual sizes, which we compared to predictions from evolutionary models.The individual masses of the components are \Ma = 2.84 \pm 0.12\ \Msun and \Mb = 1.94 \pm 0.09\ \Msun. The dynamical distance is compatible with the Hipparcos parallax. We find linear stellar radii of \Ra=2.85 \pm 0.15\ \Rsun and \Rb=1.75 \pm 0.18\ \Rsun. This result validates a posteriori the flux ratio used in previous detailed abundance studies. We determine a sub-solar initial metallicity Z=0.012±0.003Z=0.012\pm0.003 and an age of (2.8±0.3)×108 (2.8\pm0.3)\times10^8\ years. Our results imply that the primary rotates more slowly than its synchronous velocity, while the secondary is probably synchronous. We show that strong tidal coupling during the pre-main sequence evolution followed by a full decoupling at zero-age main sequence provides a plausible explanation for these very low rotation rates

    Spitzer view on the evolution of star-forming galaxies from z=0 to z~3

    Full text link
    We use a 24 micron selected sample containing more than 8,000 sources to study the evolution of star-forming galaxies in the redshift range from z=0 to z~3. We obtain photometric redshifts for most of the sources in our survey using a method based on empirically-built templates spanning from ultraviolet to mid-infrared wavelengths. The accuracy of these redshifts is better than 10% for 80% of the sample. The derived redshift distribution of the sources detected by our survey peaks at around z=0.6-1.0 (the location of the peak being affected by cosmic variance), and decays monotonically from z~1 to z~3. We have fitted infrared luminosity functions in several redshift bins in the range 0<z<~3. Our results constrain the density and/or luminosity evolution of infrared-bright star-forming galaxies. The typical infrared luminosity (L*) decreases by an order of magnitude from z~2 to the present. The cosmic star formation rate (SFR) density goes as (1+z)^{4.0\pm0.2} from z=0 to z=0.8. From z=0.8 to z~1.2, the SFR density continues rising with a smaller slope. At 1.2<z<3, the cosmic SFR density remains roughly constant. The SFR density is dominated at low redshift (z<0.5) by galaxies which are not very luminous in the infrared (L_TIR<1.e11 L_sun, where L_TIR is the total infrared luminosity, integrated from 8 to 1000 micron). The contribution from luminous and ultraluminous infrared galaxies (L_TIR>1.e11 L_sun) to the total SFR density increases steadily from z~0 up to z~2.5, forming at least half of the newly-born stars by z~1.5. Ultraluminous infrared galaxies (L_TIR>1.e12 L_sun) play a rapidly increasing role for z>~1.3.Comment: 28 pages, 17 figures, accepted for publication in Ap

    Atypical Aeromonas salmonicida vapA type V and Vibrio spp. are predominant bacteria recovered from ballan wrasse (Labrus bergylta A.) in Scotland

    Get PDF
    Healthy and/or moribund farmed and wild ballan wrasse Labrus bergylta (>0.5 to 900 g) were sampled from hatcheries (n = 2) and Atlantic salmon cage sites (n = 8) in Scotland between February 2016 and October 2018. Less than half of the sampled individuals (n = 43, 32.3%) had been vaccinated (autogenous polyvalent vaccine; dip and/or injection) against atypical furunculosis (type V and VI) while 20 (15.0%) fish were not vaccinated and the rest (70 individuals, 52.7%) were of unknown vaccination status. Swab samples from skin lesions, gill, liver, spleen and kidney were inoculated onto a variety of bacteriological agar plates and bacteriology identification and sequencing analysis was performed on significant bacterial colonies. Atypical Aeromonas salmonicida (aAs) vapA type V was the predominant bacterial species (70/215 bacteria isolates; 32.5% of bacteria samples – 43/117 positive individual fish; 36.8%) isolated in this survey followed by Vibrio species which were the most geographically prevalent bacteria. Photobacterium indicum/profundum was also isolated from L. bergylta for the first time during this study. The collection of these bacterial isolates provides useful information for disease management. Identifying the aAs isolates involved in disease in ballan wrasse could provide vital information for improving / updating existing autogenous vaccines
    corecore