187 research outputs found

    Postextrasystolic Blood Pressure Potentiation Predicts Poor Outcome of Cardiac Patients

    Get PDF
    Background Postextrasystolic blood pressure potentiation (PESP), the pulse wave augmentation after an extrasystolic beat, is typically enhanced in heart failure (HF) patients. This study prospectively tested the association of PESP and mortality in cardiac patients. Methods and Results Consecutive patients (n=941; mean age, 61 years; 19% female) presenting with acute myocardial infarction were enrolled between May 2000 and March 2005 and followed up until August 2010. The main study outcome was 5-year all-cause mortality. Patients underwent noninvasive 30-minute recordings of ECG and continuous blood pressure. PESP presence was based on the ratio between the first postectopic pulse wave amplitude and the mean of the subsequent 9 pulse wave amplitudes. A ratio above 1 was prospectively defined as PESP present. Ventricular premature complexes (VPCs) suitable for PESP quantification were present in recordings of 220 patients. PESP was present in 62 of these patients. Patients without suitable VPCs were classified as PESP absent. During the follow-up, 72 patients died. Among the 220 patients in whom PESP was measurable, 27 died. Under univariable analysis, PESP was a significant predictor of death (P<0.001) as were GRACE score (P<0.001), left ventricular ejection fraction (LVEF) (P<0.001), and the number of recorded VPCs (P<0.001). Under multivariable analysis, PESP (P<0.001), GRACE score (P<0.001), and LVEF (P=0.001) were independently associated with outcome. The combination of PESP presence and LVEF ≤35% identified a subgroup of patients with a particularly high mortality of 46.7%. Separate validation reproduced the finding in an unrelated population of 146 HF patients. Conclusions PESP, which likely reflects abnormalities of myocardial calcium cycling, predicts the mortality risk in postinfarction patients

    Stromal IFN-γR-Signaling Modulates Goblet Cell Function During Salmonella Typhimurium Infection

    Get PDF
    Enteropathogenic bacteria are a frequent cause of diarrhea worldwide. The mucosal defenses against infection are not completely understood. We have used the streptomycin mouse model for Salmonella Typhimurium diarrhea to analyze the role of interferon gamma receptor (IFN-γR)-signaling in mucosal defense. IFN-γ is known to contribute to acute S. Typhimurium diarrhea. We have compared the acute mucosal inflammation in IFN-γR-/- mice and wild type animals. IFN-γR-/- mice harbored increased pathogen loads in the mucosal epithelium and the lamina propria. Surprisingly, the epithelium of the IFN-γR-/- mice did not show the dramatic “loss” of mucus-filled goblet cell vacuoles, a hallmark of the wild type mucosal infection. Using bone marrow chimeric mice we established that IFN-γR-signaling in stromal cells (e.g. goblet cells, enterocytes) controlled mucus excretion/vacuole loss by goblet cells. In contrast, IFN-γR-signaling in bone marrow-derived cells (e.g. macrophages, DCs, PMNs) was required for restricting pathogen growth in the gut tissue. Thus IFN-γR-signaling influences different mucosal responses to infection, including not only pathogen restriction in the lamina propria, but, as shown here, also goblet cell function

    Like Will to Like: Abundances of Closely Related Species Can Predict Susceptibility to Intestinal Colonization by Pathogenic and Commensal Bacteria

    Get PDF
    The intestinal ecosystem is formed by a complex, yet highly characteristic microbial community. The parameters defining whether this community permits invasion of a new bacterial species are unclear. In particular, inhibition of enteropathogen infection by the gut microbiota ( = colonization resistance) is poorly understood. To analyze the mechanisms of microbiota-mediated protection from Salmonella enterica induced enterocolitis, we used a mouse infection model and large scale high-throughput pyrosequencing. In contrast to conventional mice (CON), mice with a gut microbiota of low complexity (LCM) were highly susceptible to S. enterica induced colonization and enterocolitis. Colonization resistance was partially restored in LCM-animals by co-housing with conventional mice for 21 days (LCMcon21). 16S rRNA sequence analysis comparing LCM, LCMcon21 and CON gut microbiota revealed that gut microbiota complexity increased upon conventionalization and correlated with increased resistance to S. enterica infection. Comparative microbiota analysis of mice with varying degrees of colonization resistance allowed us to identify intestinal ecosystem characteristics associated with susceptibility to S. enterica infection. Moreover, this system enabled us to gain further insights into the general principles of gut ecosystem invasion by non-pathogenic, commensal bacteria. Mice harboring high commensal E. coli densities were more susceptible to S. enterica induced gut inflammation. Similarly, mice with high titers of Lactobacilli were more efficiently colonized by a commensal Lactobacillus reuteri RR strain after oral inoculation. Upon examination of 16S rRNA sequence data from 9 CON mice we found that closely related phylotypes generally display significantly correlated abundances (co-occurrence), more so than distantly related phylotypes. Thus, in essence, the presence of closely related species can increase the chance of invasion of newly incoming species into the gut ecosystem. We provide evidence that this principle might be of general validity for invasion of bacteria in preformed gut ecosystems. This might be of relevance for human enteropathogen infections as well as therapeutic use of probiotic commensal bacteria

    3D Real-Time Echocardiography Combined with Mini Pressure Wire Generate Reliable Pressure-Volume Loops in Small Hearts

    Get PDF
    BACKGROUND: Pressure-volume loops (PVL) provide vital information regarding ventricular performance and pathophysiology in cardiac disease. Unfortunately, acquisition of PVL by conductance technology is not feasible in neonates and small children due to the available human catheter size and resulting invasiveness. The aim of the study was to validate the accuracy of PVL in small hearts using volume data obtained by real-time three-dimensional echocardiography (3DE) and simultaneously acquired pressure data. METHODS: In 17 piglets (weight range: 3.6–8.0 kg) left ventricular PVL were generated by 3DE and simultaneous recordings of ventricular pressure using a mini pressure wire (PVL3D). PVL3D were compared to conductance catheter measurements (PVLCond) under various hemodynamic conditions (baseline, alpha-adrenergic stimulation with phenylephrine, beta-adrenoreceptor-blockage using esmolol). In order to validate the accuracy of 3D volumetric data, cardiac magnetic resonance imaging (CMR) was performed in another 8 piglets. RESULTS: Correlation between CMR- and 3DE-derived volumes was good (enddiastolic volume: mean bias -0.03ml ±1.34ml). Computation of PVL3D in small hearts was feasible and comparable to results obtained by conductance technology. Bland-Altman analysis showed a low bias between PVL3D and PVLCond. Systolic and diastolic parameters were closely associated (Intraclass-Correlation Coefficient for: systolic myocardial elastance 0.95, arterial elastance 0.93, diastolic relaxation constant tau 0.90, indexed end-diastolic volume 0.98). Hemodynamic changes under different conditions were well detected by both methods (ICC 0.82 to 0.98). Inter- and intra-observer coefficients of variation were below 5% for all parameters. CONCLUSIONS: PVL3D generated from 3DE combined with mini pressure wire represent a novel, feasible and reliable method to assess different hemodynamic conditions of cardiac function in hearts comparable to neonate and infant size. This methodology may be integrated into clinical practice and cardiac catheterization programs and has the capability to contribute to clinical decision making even in small hearts

    Salmonella Typhimurium Type III Secretion Effectors Stimulate Innate Immune Responses in Cultured Epithelial Cells

    Get PDF
    Recognition of conserved bacterial products by innate immune receptors leads to inflammatory responses that control pathogen spread but that can also result in pathology. Intestinal epithelial cells are exposed to bacterial products and therefore must prevent signaling through innate immune receptors to avoid pathology. However, enteric pathogens are able to stimulate intestinal inflammation. We show here that the enteric pathogen Salmonella Typhimurium can stimulate innate immune responses in cultured epithelial cells by mechanisms that do not involve receptors of the innate immune system. Instead, S. Typhimurium stimulates these responses by delivering through its type III secretion system the bacterial effector proteins SopE, SopE2, and SopB, which in a redundant fashion stimulate Rho-family GTPases leading to the activation of mitogen-activated protein (MAP) kinase and NF-κB signaling. These observations have implications for the understanding of the mechanisms by which Salmonella Typhimurium induces intestinal inflammation as well as other intestinal inflammatory pathologies

    A Model of Salmonella Colitis with Features of Diarrhea in SLC11A1 Wild-Type Mice

    Get PDF
    Background: Mice do not get diarrhea when orally infected with S. enterica, but pre-treatment with oral aminoglycosides makes them susceptible to Salmonella colitis. However, genetically susceptible ItyS mice (Nramp1 G169D allele) die from systemic infection before they develop diarrhea, so a new model is needed to study the pathogenesis of diarrhea. We pretreated ItyR mice (Nramp1 G169) with oral kanamycin prior to infecting them with virulent S. Typhimurium strain 14028s in order to study Salmonella-induced diarrhea. We used both a visual scoring system and the measurement of fecal water content to measure diarrhea. BALB/c.D2 Nramp1 congenic started losing weight 5 days post-infection and they began to die from colitis 10–14 days after infection. A SPI-1 (invA) mutant caused cecal, but not colonic inflammation and did not cause diarrhea. A phoP- mutant did not cause manifestations of diarrhea in either normal or NADPHdeficient (gp91 phox) mice. However, strain 14028s caused severe colitis and diarrhea in gp91 phox-deficient mice on an ItyR background. pmr A and F mutants, which are less virulent in orally infected BALB/c mice, were fully virulent in this model of colitis. Conclusions: S. enterica must be able to invade the colonic epithelium and to persist in the colon in order to cause colitis with manifestations of diarrhea. The NADPH oxidase is not required for diarrhea in Salmonella colitis. Furthermore,

    Physiological properties of enkephalin-containing neurons in the spinal dorsal horn visualized by expression of green fluorescent protein in BAC transgenic mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Enkephalins are endogenous opiates that are assumed to modulate nociceptive information by mediating synaptic transmission in the central nervous system, including the spinal dorsal horn.</p> <p>Results</p> <p>To develop a new tool for the identification of <it>in vitro </it>enkephalinergic neurons and to analyze enkephalin promoter activity, we generated transgenic mice for a bacterial artificial chromosome (BAC). Enkephalinergic neurons from these mice expressed enhanced green fluorescent protein (eGFP) under the control of the preproenkephalin (PPE) gene (<it>penk1</it>) promoter. eGFP-positive neurons were distributed throughout the gray matter of the spinal cord, and were primarily observed in laminae I-II and V-VII, in a pattern similar to the distribution pattern of enkephalin-containing neurons. Double immunostaining analysis using anti-enkephalin and anti-eGFP antibodies showed that all eGFP-expressing neurons contained enkephalin. Incubation in the presence of forskolin, an activator of adenylate cyclase, increased the number of eGFP-positive neurons. These results indicate that eGFP expression is controlled by the <it>penk1 </it>promoter, which contains cyclic AMP-responsive elements. Sections obtained from sciatic nerve-ligated mice exhibited increased eGFP-positive neurons on the ipsilateral (nerve-ligated side) compared with the contralateral (non-ligated side). These data indicate that PPE expression is affected by peripheral nerve injury. Additionally, single-neuron RT-PCR analysis showed that several eGFP positive-neurons in laminae I-II expressed glutamate decarboxylase 67 mRNA and that some expressed serotonin type 3 receptors.</p> <p>Conclusions</p> <p>These results suggest that eGFP-positive neurons in laminae I-II coexpress enkephalin and γ-aminobutyric acid (GABA), and are activated by forskolin and in conditions of nerve injury. The <it>penk1</it>-eGFP BAC transgenic mouse contributes to the further characterization of enkephalinergic neurons in the transmission and modulation of nociceptive information.</p

    Selective Inhibition of Type III Secretion Activated Signaling by the Salmonella Effector AvrA

    Get PDF
    Salmonella enterica utilizes a type III secretion system (TTSS) encoded in its pathogenicity island 1 to mediate its initial interactions with intestinal epithelial cells, which are characterized by the stimulation of actin cytoskeleton reorganization and a profound reprogramming of gene expression. These responses result from the stimulation of Rho-family GTPases and downstream signaling pathways by specific effector proteins delivered by this TTSS. We show here that AvrA, an effector protein of this TTSS, specifically inhibits the Salmonella-induced activation of the JNK pathway through its interaction with MKK7, although it does not interfere with the bacterial infection-induced NF-κB activation. We also show that AvrA is phosphorylated at evolutionary conserved residues by a TTSS-effector-activated ERK pathway. This interplay between effector proteins delivered by the same TTSS highlights the remarkable complexity of these systems
    corecore