475 research outputs found
Microsimulation as a tool for evaluating redistribution policies
During the last twenty years, microsimulation models have been increasingly applied in qualitative and quantitative analysis of public policies. This paper provides a discussion on microsimulation techniques and their theoretical background as a tool for the analysis of public policies with particular attention to redistribution and social policies. Basic principles in using microsimulation models and interpreting their results are analyzed, with particular emphasis on tax incidence, redistribution and poverty analysis. Social welfare analysis permitted by microsimulation techniques is also discussed. Finally, the paper points to limits of present approaches and directions for future research.Au cours des vingt dernières années, l'utilisation des modèles de microsimulation des politiques de redistribution n'a cessé de croître. Cet article offre un rapide survol de ces modèles, l'accent étant mis sur les développements récents dans ce domaine de l'économie appliquée et sur quelques directions de recherche future
Evaluation of bottom-up and top-down strategies for aggregated forecasts: state space models and arima applications
Abstract. In this research, we consider monthly series from the M4 competition to study the relative performance of top-down and bottom-up strategies by means of implementing forecast automation of state space and ARIMA models. For the bottomup strategy, the forecast for each series is developed individually and then these are combined to produce a cumulative forecast of the aggregated series. For the top-down strategy, the series or components values are first combined and then a single forecast is determined for the aggregated series. Based on our implementation, state space models showed a higher forecast performance when a top-down strategy is applied. ARIMA models had a higher forecast performance for the bottom-up strategy. For state space models the top-down strategy reduced the overall error significantly. ARIMA models showed to be more accurate when forecasts are first determined individually. As part of the development we also proposed an approach to improve the forecasting procedure of aggregation strategies
Screening of DUB activity and specificity by MALDI-TOF mass spectrometry
Deubiquitylases (DUBs) are key regulators of the ubiquitin system which cleave ubiquitin moieties from proteins and polyubiquitin chains. Several DUBs have been implicated in various diseases and are attractive drug targets. We have developed a sensitive and fast assay to quantify in vitro DUB enzyme activity using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Unlike other current assays, this method uses unmodified substrates, such as diubiquitin topoisomers. By analyzing 42 human DUBs against all diubiquitin topoisomers we provide an extensive characterization of DUB activity and specificity. Our results confirm the high specificity of many members of the OTU and JAMM DUB families and highlight that all USPs tested display low linkage selectivity. We also demonstrate that this assay can be deployed to assess the potency and specificity of DUB inhibitors by profiling 11 compounds against a panel of 32 DUBs
A Novel Redox Method for Rapid Production of Functional Bi-Specific Antibodies For Use in Early Pilot Studies
We demonstrate here a rapid alternative method for the production of functional bi-specific antibodies using the mild reducing agent 2-mercaptoethanesulfonic acid sodium salt (MESNA). Following reduction of a mixture of two monoclonal antibodies with MESNA to break inter heavy chain bonds, this solution is dialysed under oxidising conditions and antibodies are allowed to reform. During this reaction a mixture of antibodies is formed, including parental antibodies and bi-specific antibody. Bi-specific antibodies are purified over two sequential affinity columns. Following purification, bi-specificity of antibodies is determined in enzyme-linked immunosorbent assays and by flow cytometry. Using this redox method we have been successful in producing hybrid and same-species bi-specific antibodies in a time frame of 6–10 working days, making this production method a time saving alternative to the time-consuming traditional heterohybridoma technology for the production of bi-specific antibodies for use in early pilot studies. The use of both rat and mouse IgG antibodies forming a rat/mouse bi-specific antibody as well as producing a pure mouse bi-specific antibody and a pure rat bi-specific antibody demonstrates the flexibility of this production method
- …