238 research outputs found

    Steel industry restructuring and location

    Get PDF
    In this paper, we link technology-based competition, demand patterns, and managerial agency to describe and explain the process of restructuring in the American steel industry in terms of its economic geography and in the context of sweeping changes in the industry’s global structure. Between World War II and the end of the1960’s, the American steel industry was dominated by large integrated steel producers. During this period, competition was primarily among integrated firms and the location decisions taken during the period concerned individual production units within those firms. Between the 1970’s and the 1990’s, a new kind of competition re-shaped the economic geography of the American steel industry: employing scrap-based production methods, minimills emerged to challenge the integrated producers. Shifts in demand away from the previous geographical core combined with aggressive investments by minimill managers in production capacity and in capability upgrading to drive home the minimill advantage. Finally, with the turn of the century, world steel markets began to reshape based on globalization. Energized by liberalization and privatization in many parts of the world, and supported by information technology and managerial innovations that increased spans of control, steel firm managers employed aggressive mergers & acquisitions to create the first large-scale steel multinational corporations. During this period, consolidation redrew the boundaries of firm competition, and foreign steel firms emerged as owners of a major share of American steelmaking capacity. Moreover, increases in the world demand for steel and world steelmaking capacity had profound effect in reshaping the economic geography of the competitive landscape. By examining these critical periods of restructuring in the steel industry, the role of economic geography as a competitive factor is exposed, and context is provided for understanding the regional and spatial implications of competitive adjustment

    Minimal irreversible quantum mechanics. The decay of unstable states

    Get PDF
    Brownian motion is modelled by a harmonic oscillator (Brownian particle) interacting with a continuous set of uncoupled harmonic oscillators. The interaction is linear in the coordinates and the momenta. The model has an analytical solution that is used to study the time evolution of the reduced density operator. It is derived in a closed form, in the one-particle sector of the model. The irreversible behavior of the Brownian particle is described by a reduced density matrix.Comment: 39 pages, 2 figure

    Functional Approach to Quantum Decoherence and the Classical Final Limit

    Get PDF
    For a wide set of quantum systems it is demonstrated that the quantum regime can be considered as the transient phase while the final classical statistical regime is a permanent state. A basis where exact matrix decoherence appears for these final states is found. The relation with the decoherence of histories formalism is studied. A set of final intrinsically consistent histories is found.Comment: 20 pages. Phys. Rev A in press 200

    Measuring the Lyapunov exponent using quantum mechanics

    Full text link
    We study the time evolution of two wave packets prepared at the same initial state, but evolving under slightly different Hamiltonians. For chaotic systems, we determine the circumstances that lead to an exponential decay with time of the wave packet overlap function. We show that for sufficiently weak perturbations, the exponential decay follows a Fermi golden rule, while by making the difference between the two Hamiltonians larger, the characteristic exponential decay time becomes the Lyapunov exponent of the classical system. We illustrate our theoretical findings by investigating numerically the overlap decay function of a two-dimensional dynamical system.Comment: 9 pages, 6 figure

    Differences in genome-wide gene expression response in peripheral blood mononuclear cells between young and old men upon caloric restriction

    Get PDF
    Background: Caloric restriction (CR) is considered to increase lifespan and to prevent various age-related diseases in different nonhuman organisms. Only a limited number of CR studies have been performed on humans, and results put CR as a beneficial tool to decrease risk factors in several age-related diseases. The question remains at what age CR should be implemented to be most effective with respect to healthy aging. The aim of our study was to elucidate the role of age in the transcriptional response to a completely controlled 30 % CR diet on immune cells, as immune response is affected during aging. Ten healthy young men, aged 20–28, and nine healthy old men, aged 64–85, were subjected to a 2-week weight maintenance diet, followed by 3 weeks of 30 % CR. Before and after 30 % CR, the whole genome gene expression in peripheral blood mononuclear cells (PBMCs) was assessed. Results: Expression of 554 genes showed a different response between young and old men upon CR. Gene set enrichment analysis revealed a downregulation of gene sets involved in the immune response in young but not in old men. At baseline, immune response-related genes were higher expressed in old compared to young men. Upstream regulator analyses revealed that most potential regulators were controlling the immune response. Conclusions: Based on the gene expression data, we theorise that a short period of CR is not effective in old men regarding immune-related pathways while it is effective in young men

    A Quorum-Sensing Factor in Vegetative Dictyostelium Discoideum Cells Revealed by Quantitative Migration Analysis

    Get PDF
    Background: Many cells communicate through the production of diffusible signaling molecules that accumulate and once a critical concentration has been reached, can activate or repress a number of target genes in a process termed quorum sensing (QS). In the social amoeba Dictyostelium discoideum, QS plays an important role during development. However little is known about its effect on cell migration especially in the growth phase. Methods and Findings: To investigate the role of cell density on cell migration in the growth phase, we use multisite timelapse microscopy and automated cell tracking. This analysis reveals a high heterogeneity within a given cell population, and the necessity to use large data sets to draw reliable conclusions on cell motion. In average, motion is persistent for short periods of time (tÆ’5min), but normal diffusive behavior is recovered over longer time periods. The persistence times are positively correlated with the migrated distances. Interestingly, the migrated distance decreases as well with cell density. The adaptation of cell migration to cell density highlights the role of a secreted quorum sensing factor (QSF) on cell migration. Using a simple model describing the balance between the rate of QSF generation and the rate of QSF dilution, we were able to gather all experimental results into a single master curve, showing a sharp cell transition between high and low motile behaviors with increasing QSF. Conclusion: This study unambiguously demonstrates the central role played by QSF on amoeboid motion in the growt

    HER2 testing on core needle biopsy specimens from primary breast cancers: interobserver reproducibility and concordance with surgically resected specimens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Accurate evaluation of human epidermal growth factor receptor type-2 (HER2) status based on core needle biopsy (CNB) specimens is mandatory for identification of patients with primary breast cancer who will benefit from primary systemic therapy with trastuzumab. The aim of the present study was to validate the application of HER2 testing with CNB specimens from primary breast cancers in terms of interobserver reproducibility and comparison with surgically resected specimens.</p> <p>Methods</p> <p>A total of 100 pairs of archival formalin-fixed paraffin-embedded CNB and surgically resected specimens of invasive breast carcinomas were cut into sections. All 100 paired sections were subjected to HER2 testing by immunohistochemistry (IHC) and 27 paired sections were subjected to that by fluorescence in situ hybridization (FISH), the results being evaluated by three and two observers, respectively. Interobserver agreement levels in terms of judgment and the concordance of consensus scores between CNB samples and the corresponding surgically resected specimens were estimated as the percentage agreement and κ statistic.</p> <p>Results</p> <p>In CNB specimens, the percentage interobserver agreement of HER2 scoring by IHC was 76% (κ = 0.71) for 3 × 3 categories (0-1+ <it>versus </it>2+ <it>versus </it>3+) and 90% (κ = 0.80) for 2 × 2 categories (0-2+ <it>versus </it>3+). These levels were close to the corresponding ones for the surgically resected specimens: 80% (κ = 0.77) for 3 × 3 categories and 92% (κ = 0.88) for 2 × 2 categories. Concordance of consensus for HER2 scores determined by IHC between CNB and the corresponding surgical specimens was 87% (κ = 0.77) for 3 × 3 categories, and 94% (κ = 0.83) for 2 × 2 categories. Among the 13 tumors showing discordance in the mean IHC scores between the CNB and surgical specimens, the results of consensus for FISH results were concordant in 11. The rate of successful FISH analysis and the FISH positivity rate in cases with a HER2 IHC score of 2+ differed among specimens processed at different institutions.</p> <p>Conclusion</p> <p>It is mandatory to study HER2 on breast cancers, and either CNB or surgical specimen can be used.</p
    • …
    corecore