187 research outputs found

    The pseudomorphic to bulk fcc phase transition of thin Ni films on Pd(100)

    Full text link
    We have measured the transformation of pseudomorphic Ni films on Pd(100) into their bulk fcc phase as a function of the film thickness. We made use of x-ray diffraction and x-ray induced photoemission to study the evolution of the Ni film and its interface with the substrate. The growth of a pseudomorphic film with tetragonally strained face centered symmetry (fct) has been observed by out-of-plane x-ray diffraction up to a maximum thickness of 10 Ni layers (two of them intermixed with the substrate), where a new fcc bulk-like phase is formed. After the formation of the bulk-like Ni domains, we observed the pseudomorphic fct domains to disappear preserving the number of layers and their spacing. The phase transition thus proceeds via lateral growth of the bulk-like phase within the pseudomorphic one, i.e. the bulk-like fcc domains penetrate down to the substrate when formed. This large depth of the walls separating the domains of different phases is also indicated by the strong increase of the intermixing at the substrate-film interface, which starts at the onset of the transition and continues at even larger thickness. The bulk-like fcc phase is also slightly strained; its relaxation towards the orthomorphic lattice structure proceeds slowly with the film thickness, being not yet completed at the maximum thickness presently studied of 30 Angstrom (i.e. about 17 layers).Comment: 8 pages, 7 figure

    A DVD-MoS2/Ag2S/Ag nanocomposite thiol-conjugated with porphyrins for an enhanced light-mediated hydrogen evolution reaction

    Get PDF
    We have recently demonstrated in a previous work an appreciable photoelectrocatalytic (PEC) behavior towards hydrogen evolution reaction (HER) of a MoS2/Ag2S/Ag nanocomposite electrochemically deposited on a commercial writable Digital Versatile Disc (DVD), consisting therefore on an interesting strategy to convert a common waster product in an added-value material. Herein, we present the conjugation of this MoS2/Ag2S/Ag-DVD nanocomposite with thiol-terminated tetraphenylporphyrins, taking advantage of the grafting of thiol groups through covalent S-S bridges, for integrating the well-known porphyrins photoactivity into the nanocomposite. Moreover, we employ two thiol-terminated porphyrins with different hydrophilicity, demonstrating that they either suppress or improve the PEC-HER performance of the overall hybrid, as a function of the molecule polarity, sustaining the concept of a local proton relay. Actually, the active polar porphyrin—MoS2/Ag2S/Ag-DVD hybrid material presented, when illuminated, a better HER performance, compared to the pristine nanocomposite, since the porphyrin may inject photoelectrons in the conduction band of the semiconductors at the formed heterojunction, presenting also a stable operational behavior during overnight chopped light chronoamperometric measurement, thanks to the robust bond created

    Indium selenide: An insight into electronic band structure and surface excitations

    Get PDF
    We have investigated the electronic response of single crystals of indium selenide by means of angle-resolved photoemission spectroscopy, electron energy loss spectroscopy and density functional theory. The loss spectrum of indium selenide shows the direct free exciton at similar to 1.3 eV and several other peaks, which do not exhibit dispersion with the momentum. The joint analysis of the experimental band structure and the density of states indicates that spectral features in the loss function are strictly related to single-particle transitions. These excitations cannot be considered as fully coherent plasmons and they are damped even in the optical limit, i.e. for small momenta. The comparison of the calculated symmetry-projected density of states with electron energy loss spectra enables the assignment of the spectral features to transitions between specific electronic states. Furthermore, the effects of ambient gases on the band structure and on the loss function have been probed

    Effects of the induced micro- and meso-porosity on the single site density and turn over frequency of Fe-N-C carbon electrodes for the oxygen reduction reaction

    Get PDF
    Fe-N-C have emerged as one of the best non-PGM alternatives to Pt/C catalysts for the electrochemical reduction of O2 in fuel cells. In this work, we explore the effect of steam and CO2 treatments at high temperatures on the nanometric porous structure of a commercial carbon black. Using those support materials, we synthesize different Fe-N-C catalysts to achieve a better understanding on the role of micro- and mesopores of the support towards catalytic site formation and site activity. Different time and temperature of treatments result in an almost linear increment of surface area and microporous volume, which allows better nitrogen functionalization. Site density evaluation, performed using a recently described NO-stripping technique, showed an increase in site density and TOF which correlates well with the morphology variation. The percentage of active iron increases from 2.65 % to 14.74 % in activated catalysts confirming a better access of electrolyte to the iron sites

    Oxygen reduction reaction at LaxCa1-xMnO3 nanostructures: interplay between A-site segregation and B-site valency

    Get PDF
    The mean activity of surface Mn sites at LaxCa1−xMnO3 nanostructures towards the oxygen reduction reaction (ORR) in alkaline solution is assessed as a function of the oxide composition. Highly active oxide nanoparticles were synthesised by an ionic liquid-based route, yielding phase-pure nanoparticles, across the entire range of compositions, with sizes between 20 and 35 nm. The bulk vs. surface composition and structure are investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge spectroscopy (XANES). These techniques allow quantification of not only changes in the mean oxidation state of Mn as a function of x, but also the extent of A-site surface segregation. Both trends manifest themselves in the electrochemical responses associated with surface Mn sites in 0.1 M KOH solution. The characteristic redox signatures of Mn sites are used to estimate their effective surface number density. This parameter allows comparing, for the first time, the mean electrocatalytic activity of surface Mn sites as a function of the LaxCa1−xMnO3 composition. The ensemble of experimental data provides a consistent picture in which increasing electron density at the Mn sites leads to an increase in the ORR activity. We also demonstrate that normalisation of electrochemical activity by mass or specific surface area may result in inaccurate structure–activity correlations

    Surface Engineering of Chemically Exfoliated MoS<inf>2</inf> in a "click": How to Generate Versatile Multifunctional Transition Metal Dichalcogenides-Based Platforms

    Get PDF
    Copyright © 2018 American Chemical Society. The interest for transition metal dichalcogenides (TMDs) as two-dimensional (2D) analogues of graphene is steadily growing along with the need of efficient and easy tunable protocols for their surface functionalization. This latter aspect holds a key role in the widespread application of TMDs in various technological fields and it represents the missing step to bridge the gap between the more popular C sp2-based networks and their inorganic counterparts. Although significant steps forward have already been made in the field of TMDs functionalization (particularly for MoS2), a rational approach to their surface engineering for the generation of 2D organic-inorganic hybrids capable to accommodate various molecules featured by orthogonal groups has not been reported yet. The paper paves the way toward a new frontier for "click" chemistry in material science. It describes the post-synthetic modification (PSM) of covalently decorated MoS2 nanosheets with phenylazido pendant arms and the successful application of CuAAC chemistry (copper-mediated azide-alkyne cycloaddition) towards the generation of highly homo- and hetero-decorated MoS2 platforms. This contribution goes beyond the proof of evidence of the chemical grafting of organic groups to the surface of exfoliated MoS2 flakes through covalent C-S bonds. It also demonstrates the versatility of the hybrid samples to undergo post-synthetic modifications thus imparting multimodality to these 2D materials. Several physico-chemical [SEM microscopy, fluorescence lifetime imaging (FLIM)], spectroscopic (IR, Raman, XPS, UV-vis), and analytical tools have been combined together for the hybrids' characterization as well as for the estimation of their functionalization loading

    Top-down synthesis of multifunctional iron oxide nanoparticles formacrophage labelling and manipulation

    Get PDF
    Multifunctional iron oxide (FeOx) magnetic nanoparticles (MNPs) are promising items for biomedical applications. They are studied as theranostic agents for cancer treatment, selective probes for bioanalytical assays, controllable carriers for drug delivery and biocompatible tools for cell sorting or tissue repair. Here we report a new method for the synthesis in water of FeOx–MNPs via a top-down physical technique consisting in Laser Ablation Synthesis in Solution (LASiS). LASiS is a green method that does not require chemicals or stabilizers, because nanoparticles are directly obtained in water as a stable colloidal system. A gamut of characterization techniques was used for investigating the structure of FeOx–MNPs that have a polycrystalline structure prevalently composed of magnetite (ca. 75%) and hematite (ca. 22%). The FeOx–MNPs exhibit very good magnetic properties if compared to what is usually reported for iron oxide nanoparticles, with saturation magnetization close to the bulk value (ca. 80 emu g1) and typical signatures of the coexistence of ferrimagnetic and antiferromagnetic phases in the same particle. The functionalization of FeOx–MNPs after the synthesis was possible with a variety of ligands. In particular, we succeeded in the functionalization of FeOx–MNPs with carboxylated phosphonates, fluorescent alkylamines, fluorescent isothiocyanates and bovine serum albumin. Our FeOx–MNPs showed excellent biocompatibility. Multifunctional FeOx–MNPs were exploited for macrophage cell labelling with fluorescent probes as well as for cell sorting and manipulation by external magnetic fields
    • …
    corecore