3,244 research outputs found

    Spin and transport effects in quantum microcavities with polarization splitting

    Full text link
    Transport properties of exciton-polaritons in anisotropic quantum microcavities are considered theoretically. Microscopic symmetry of the structure is taken into account by allowing for both the longitudinal-transverse (TE-TM) and anisotropic splitting of polariton states. The splitting is equivalent to an effective magnetic field acting on polariton pseudospin, and polarization conversion in microcavities is shown to be caused by an interplay of exciton-polariton spin precession and elastic scattering. In addition, we considered the spin-dependent interference of polaritons leading to weak localization and calculated coherent backscattering intensities in different polarizations. Our findings are in a very good agreement with the recent experimental data.Comment: 8 pages, 6 figure

    Spin current generation from Coulomb-Rashba interaction in semiconductor bilayers

    Full text link
    Electrons in double-layer semiconductor heterostructures experience a special type of spin-orbit interaction which arises in each layer from the perpendicular component of the Coulomb electric field created by electron density fluctuations in the other layer. We show that this interaction, acting in combination with the usual spin-orbit interaction, can generate a spin current in one layer when a charge current is driven in the other. This effect is symmetry-wise distinct from the spin Hall drag. The spin current is not, in general, perpendicular to the drive current.Comment: 4 pages, 2 figure

    Hole spin relaxation in [001] strained asymmetric Si/SiGe and Ge/SiGe quantum wells

    Full text link
    Hole spin relaxation in [001] strained asymmetric Si/Si0.7_{0.7}Ge0.3_{0.3} (Ge/Si0.3_{0.3}Ge0.7_{0.7}) quantum wells is investigated in the situation with only the lowest hole subband being relevant. The effective Hamiltonian of the lowest hole subband is obtained by the subband L\"owdin perturbation method in the framework of the six-band Luttinger kâ‹…p{\bf k}\cdot{\bf p} model, with sufficient basis functions included. The lowest hole subband in Si/SiGe quantum wells is light-hole like with the Rashba spin-orbit coupling term depending on momentum both linearly and cubically, while that in Ge/SiGe quantum wells is a heavy hole state with the Rashba spin-orbit coupling term depending on momentum only cubically. The hole spin relaxation is investigated by means of the fully microscopic kinetic spin Bloch equation approach, with all the relevant scatterings considered. It is found that the hole-phonon scattering is very weak, which makes the hole-hole Coulomb scattering become very important. The hole system in Si/SiGe quantum wells is generally in the strong scattering limit, while that in Ge/SiGe quantum wells can be in either the strong or the weak scattering limit. The Coulomb scattering leads to a peak in both the temperature and hole density dependences of spin relaxation time in Si/SiGe quantum wells, located around the crossover between the degenerate and nondegenerate regimes. Nevertheless, the Coulomb scattering leads to not only a peak but also a valley in the temperature dependence of spin relaxation time in Ge/SiGe quantum wells.... (The remaining is omitted due to the limit of space).Comment: 12 pages, 11 figures, PRB in pres

    Time-resolved and continuous-wave optical spin pumping of semiconductor quantum wells

    Full text link
    Experimental and theoretical studies of all-optical spin pump and probe of resident electrons in CdTe/(Cd,Mg)Te semiconductor quantum wells are reported. A two-color Hanle-MOKE technique (based on continuous-wave excitation) and time-resolved Kerr rotation in the regime of resonant spin amplification (based on pulsed excitation) provide a complementary measure of electron spin relaxation time. Influence of electron localization on long-lived spin coherence is examined by means of spectral and temperature dependencies. Various scenarios of spin polarization generation (via the trion and exciton states) are analyzed and difference between continuous-wave and pulsed excitations is considered. Effects related to inhomogeneous distribution of gg-factor and anisotropic spin relaxation time on measured quantities are discussed.Comment: 26 pages, 19 figures, submitted to special issue on Optical Orientation of Semiconductor Science and Technolog

    Polariton-polariton scattering in microcavities: A microscopic theory

    Full text link
    We apply the fermion commutation technique for composite bosons to polariton-polariton scattering in semiconductor planar microcavities. Derivations are presented in a simple and physically transparent fashion. A procedure of orthogonolization of the initial and final two-exciton state wavefunctions is used to calculate the effective scattering matrix elements and the scattering rates. We show how the bosonic stimulation of the scattering appears in this full fermionic approach whose equivalence to the bosonization method is thus demonstrated in the regime of low exciton density. We find an additional contribution to polariton-polariton scattering due to the exciton oscillator strength saturation, which we analyze as well. We present a theory of the polariton-polariton scattering with opposite spin orientations and show that this scattering process takes place mainly via dark excitonic states. Analytical estimations of the effective scattering amplitudes are given.Comment: Theoretical paper on polariton-polariton scattering in planar microcavities. The new version contains a slightly modified abstract and a revised introduction. Typos have been corrected wherever spotted. 16 page
    • …
    corecore