14 research outputs found

    SOSORT 2012 consensus paper: reducing x-ray exposure in pediatric patients with scoliosis

    Get PDF
    This 2012 Consensus paper reviews the literature on side effects of x-ray exposure in the pediatric population as it relates to scoliosis evaluation and treatment. Alternative methods of spinal assessment and imaging are reviewed, and strategies for reducing the number of radiographs are developed. Using the Delphi technique, SOSORT members developed consensus statements that describe how often radiographs should be taken in each of the pediatric and adolescent sub-populations

    Monte Carlo estimation of dose difference in lung from 192Ir brachytherapy due to tissue inhomogeneity

    No full text
    Lung brachytherapy using high-dose rate 192Ir technique is a well-established technique of radiation therapy. However, many commercial treatment planning systems do not have the ability to consider the inhomogeneity of lung in relation to normal tissue. Under such circumstances dose calculations for tissues and organs at risk close to the target are inaccurate. The purpose of the current study was to estimate the dose difference due to tissue inhomogeneity using the Monte Carlo simulation code MCNP-5. Results showed that there was a relative sub dosage by treatment planning systems calculations in neighbouring tissues around the radioactive source due to inhomogeneity ignorance. The presence of lung instead of normal tissue resulted in an increase in relative dose, which approached 8 % at 4-cm distance from the source. Additionally, the relative increase was small for the lung (2.1 %) and larger for organs at risk such as the heart (6.8 %) and bone marrow (7.6 %). © The Author 2011. Published by Oxford University Press. All rights reserved

    Verification of radiation dose calculations during paediatric cystourethrography examinations using MCNP5 and PCXMC 2.0 Monte Carlo codes

    No full text
    The estimation of the radiological risk in the case of children is of particular importance due to their enhanced radiosensitivity when compared with that of adult patients. The purpose of this study is to estimate the organ and effective doses of paediatric patients undergoing micturating cystourethrography examinations. Since direct measurements of the dose in each organ are very difficult, dose-area products of 90 patients undergoing cystourethrography examinations were recorded and used with two Monte Carlo codes, MCNP5 and PCXMC2.0, to assess the organ doses in these procedures. The organs receiving the highest radiation doses were the urinary bladder (ranging from 1.9 mSv in the newborn to 4.7 mSv in a 5-y old patient) and the large intestines (ranging from 1.5 mSv in the newborn to 3.1 mSv in the 5-y old patient). For all ages the main contributors to the total organ or effective doses are the fluoroscopy projections compared with the radiographs. There was a reasonable agreement between the dose estimates provided by PCXMC v2.0 and MCNP5 for most of the organs considered in this study. In special cases, there were systematic disagreements in organ doses such as in the skeleton, gonads and oesophagus due to the anatomical differences between patient anatomic models employed by the two codes. © The Author 2013. Published by Oxford University Press. All rights reserved

    Dosimetry using gafchromic XR-RV2 radiochromic films in interventional radiology

    No full text
    Patient dose measurements of local entrance dose to the skin have been carried out using radiochromic film (Gafchromic XR-RV2) in a sample of interventional procedures. The major aim of the work was to measure patient entrance dose from such examinations using Gafchromic XR-RV2. Forty-five various interventional procedures (including nefrostomies and urinary stenting, biliary stenting and percutaneous transhepatic biliary drainage (PTBD) and aorta stent grafting) were evaluated. Maximum entrance doses were 537±119 mGy in nephrostomies, 943±631 mGy in billiary stenting and PTBD and 2425±569 mGy in aorta stent grafting. Results indicate that all patients undergoing aorta stent grafting received skin dose above 1500 mGy, which means that there is an increasing potential to suffer radiation-induced skin injuries. The film provides dose mapping, the position of the skin area with highest dose and can be used for immediate qualitative and as well as for quantitative assessment of patient skin dose. © The Author 2011. Published by Oxford University Press. All rights reserved

    Effective dose variation in pediatric computed tomography: Dose reference levels in Greece

    No full text
    Computed tomography provides high-resolution imaging of the human body. However, it contributes mainly to the doses on the population. Additionally, the fact that children are two to three times more sensitive to the x rays compared to the adults results in the increased need of taking action for the reduction of the dose regarding the computed tomography examinations. The first part of this paper presents the results of an investigation on the variation of doses to children while the second part compares those results with the European standards. This project took place in twelve hospitals distributed throughout the country. The weighted computed dose-index and the dose length product were calculated for four different age-categories (namely 0, 1, 5 and 10-year-old) and for the three most often examinations (brain, thorax and abdomen). Effective dose values were estimated using coefficients and patients data. The measurements showed that only a few hospitals are taking into account the protocols regarding the age of the children. As a result, many patients receive high doses without this being necessary. Thus, reducing dose methods should be adapted in order to improve the optimization of this high dose modality. Copyright © 2009 Health Physics Society

    Radiation risk assessment in neonatal radiographic examinations of the chest and abdomen: A clinical and Monte Carlo dosimetry study

    No full text
    Seeking to assess the radiation risk associated with radiological examinations in neonatal intensive care units, thermo-luminescence dosimetry was used for the measurement of entrance surface dose (ESD) in 44 AP chest and 28 AP combined chest-abdominal exposures of a sample of 60 neonates. The mean values of ESD were found to be equal to 44 ± 16 μGy and 43 ± 19 μGy, respectively. The MCNP-4C2 code with a mathematical phantom simulating a neonate and appropriate x-ray energy spectra were employed for the simulation of the AP chest and AP combined chest-abdominal exposures. Equivalent organ dose per unit ESD and energy imparted per unit ESD calculations are presented in tabular form. Combined with ESD measurements, these calculations yield an effective dose of 10.2 ± 3.7 μSv, regardless of sex, and an imparted energy of 18.5 ± 6.7 μJ for the chest radiograph. The corresponding results for the combined chest-abdominal examination are 14.7 ± 7.6 μSv (males)/17.2 ± 7.6 μSv (females) and 29.7 ± 13.2 μJ. The calculated total risk per radiograph was low, ranging between 1.7 and 2.9 per million neonates, per film, and being slightly higher for females. Results of this study are in good agreement with previous studies, especially in view of the diversity met in the calculation methods. © 2006 IOP Publishing Ltd

    Evaluation of organ and effective doses during paediatric barium meal examinations using PCXMC 2.0 monte carlo code

    No full text
    Radiation protection and estimation of the radiological risk in paediatric radiology is essential due to children's significant radiosensitivity and their greater overall health risk. The purpose of this study was to estimate the organ and effective doses of paediatric patients undergoing barium meal (BM) examinations and also to evaluate the assessment of radiation Risk of Exposure Induced cancer Death (REID) to paediatric patients undergoing BM examinations. During the BM studies, fluoroscopy and multiple radiographs are involved. Since direct measurements of the dose in each organ are very difficult if possible at all, clinical measurements of dose-area products (DAPs) and the PCXMC 2.0 Monte Carlo code were involved. In clinical measurements, DAPs were assessed during examination of 51 patients undergoing BM examinations, separated almost equally in three age categories, neonatal, 1- and 5-y old. Organs receiving the highest amounts of radiation during BM examinations were as follows: the stomach (10.4, 10.2 and 11.1 mGy), the gall bladder (7.1, 5.8 and 5.2 mGy) and the spleen (7.5, 8.2 and 4.3 mGy). The three values in the brackets correspond to neonatal, 1- and 5-y-old patients, respectively. For all ages, the main contributors to the total organ and effective doses are the fluoroscopy projections. The average DAP values and absorbed doses to patient were higher for the left lateral projections. The REID was calculated for boys (4.8 × 10-2, 3.0 × 10-2 and 2.0 × 10-2 %) for neonatal, 1- and 5-y old patients, respectively. The corresponding values for girl patients were calculated (12.1 × 10-2, 5.5 × 10-2 and 3.4 × 10-2 %). © The Author 2014

    Monte Carlo estimation of radiation doses during paediatric barium meal and cystourethrography examinations

    No full text
    Organ doses are important quantities in assessing the radiation risk. In the case of children, estimation of this risk is of particular concern due to their significant radiosensitivity and the greater health detriment. The purpose of this study is to estimate the organ doses to paediatric patients undergoing barium meal and micturating cystourethrography examinations by clinical measurements and Monte Carlo simulation. In clinical measurements, dose-area products (DAPs) were assessed during examination of 50 patients undergoing barium meal and 90 patients undergoing cystourethrography examinations, separated equally within three age categories: namely newborn, 1 year and 5 years old. Monte Carlo simulation of photon transport in male and female mathematical phantoms was applied using the MCNP5 code in order to estimate the equivalent organ doses. Regarding the micturating cystourethrography examinations, the organs receiving considerable amounts of radiation doses were the urinary bladder (1.87,2.43 and 4.7 mSv, the first, second and third value in the parentheses corresponds to neonatal, 1 year old and 5 year old patients, respectively), the large intestines (1.54,1.8, 3.1 mSv), the small intestines (1.34,1.56,2.78 mSv), the stomach (1.46,1.02,2.01 mSv) and the gall bladder (1.46,1.66,2.18 mSv), depending upon the age of the child. Organs receiving considerable amounts of radiation during barium meal examinations were the stomach (9.81, 9.92, 11.5 mSv), the gall bladder (3.05, 5.74, 7.15 mSv), the rib bones (9.82, 10.1, 11.1 mSv) and the pancreas (5.8, 5.93, 6.65 mSv), depending upon the age of the child. DAPs to organ/effective doses conversion factors were derived for each age and examination in order to be compared with other studies. © 2011 Institute of Physics and Engineering in Medicine Printed in the UK

    Entrance radiation doses during paediatric cardiac catheterisations performed for diagnosis or the treatment of congenital heart disease

    No full text
    The purpose of this study was to estimate the radiation exposure of children, during cardiac catheterisations for the diagnosis or treatment of congenital heart disease. Radiation doses were estimated for 45 children aged from 1 d to 13 y old. Thermoluminescent dosemeters (TLDs) were used to estimate the posterior entrance dose (DP), the lateral entrance dose (DLAT), the thyroid dose and the gonads dose. A dose-area product (DAP) meter was also attached externally to the tube of the angiographic system and gave a direct value in mGy cm2 for each procedure. Posterior and lateral entrance dose values during cardiac catheterisations ranged from 1 to 197 mGy and from 1.1 to 250.3 mGy, respectively. Radiation exposure to the thyroid and the gonads ranged from 0.3 to 8.4 mGy to 0.1 and 0.7 mGy, respectively. Finally, the DAP meter values ranged between 360 and 33,200 mGy cm2. Radiation doses measured in this study are comparable with those reported to previous studies. Moreover, strong correlation was found between the DAP values and the entrance radiation dose measured with TLDs. © 2006 Oxford University Press

    Comparison of dose from radiological examination for scoliosis in children among two pediatric hospitals by Monte Carlo simulation

    No full text
    The radiation exposures of children undergoing full spine radiography were investigated in two pediatric hospitals in Greece. Entrance surface kerma (Ka,e) was assessed by thermoluminescence dosimetry and patient's effective dose (E) was estimated by Monte Carlo simulation. All required information regarding patient age and sex, the irradiation geometry, the x-ray spectra, and other exposure parameters (tube voltage and current) were registered as well. Values of Ka,e were measured to range from 0.22 mGy to 2.12 mGy, while E was estimated to range from 0.03 mSv to 0.47 mSv. In general, all values were greater in one of the two hospitals, as higher tube currents and exposure times were used in the examinations because of the difference in radiographers' training and practice. Moreover, dose to red bone marrow was found to be between 0.01 to 0.23 mSv and dose to breast ranged between 0.02 and 1.05 mSv depending on the age, projection, and hospital. These values are comparable with literature sources. ©2008Health Physics Society
    corecore