611 research outputs found

    Desperately seeking niches: Grassroots innovations and niche development in the community currency field

    Get PDF
    The sustainability transitions literature seeks to explain the conditions under which technological innovations can diffuse and disrupt existing socio-technical systems through the successful scaling up of experimental ‘niches’; but recent research on ‘grassroots innovations’ argues that civil society is a promising but under-researched site of innovation for sustainability, albeit one with very different characteristics to the market-based innovation normally considered in the literature. This paper aims to address that research gap by exploring the relevance of niche development theories in a civil society context. To do this, we examine a growing grassroots innovation – the international field of community currencies – which comprises a range of new socio-technical configurations of systems of exchange which have emerged from civil society over the last 30 years, intended to provide more environmentally and socially sustainable forms of money and finance. We draw on new empirical research from an international study of these initiatives comprising primary and secondary data and documentary sources, elite interviews and participant observation in the field. We describe the global diffusion of community currencies, and then conduct a niche analysis to evaluate the utility of niche theories for explaining the development of the community currency movement. We find that some niche-building processes identified in the existing literature are relevant in a grassroots context: the importance of building networks, managing expectations and the significance of external ‘landscape’ pressures, particularly at the level of national-type. However, our findings suggest that existing theories do not fully capture the complexity of this type of innovation: we find a diverse field addressing a range of societal systems (money, welfare, education, health, consumerism), and showing increasing fragmentation (as opposed to consolidation and standardisation); furthermore, there is little evidence of formalised learning taking place but this has not hampered movement growth. We conclude that grassroots innovations develop and diffuse in quite different ways to conventional innovations, and that niche theories require adaptation to the civil society context

    What Influences the Diffusion of Grassroots Innovations for Sustainability? Investigating Community Currency Niches

    Get PDF
    Community action for sustainability is a promising site of socio-technical innovation. Here we test the applicability of co-evolutionary niche theories of innovation diffusion (Strategic Niche Management, SNM) to the context of ‘grassroots innovations’. We present new empirical findings from an international study of 12 community currency niches (such as LETS, time banks, local currencies). These are parallel systems of exchange, designed to operate alongside mainstream money, meeting additional sustainability needs. Our findings confirm SNM predictions that niche-level activity correlates with diffusion success, but we highlight additional or confounding factors, and how niche theories might be adapted to better fit civil-society innovations. In so doing, we develop a model of grassroots innovation niche diffusion which builds on existing work and tailors it to this specific context. The paper concludes with a series of theoretically-informed recommendations for practitioners and policymakers to support the development and potential of grassroots innovations

    Wind dispersal of genetically modified pollen from oilseed rape and rye fields

    Get PDF
    The increasing use of genetically modified plants (GMP) has opened up for a discussion about the problems related to the co-existence of GM and non-GM crops and especially the consequences for organic farming. One of the objectives of DARCOF project TOPRO (Tool for protection against contamination by GMO) has been to develop specific modelling tools, which can be used for the prediction of dispersal of GM pollen under different conditions and for investigating measures to limit the GM dispersal to organic fields

    Noncovalent Grafting of Molecular Complexes to Solid Supports by Counterion Confinement

    Get PDF
    Grafting molecular complexes on solid supports is a facile strategy to synthesize advanced materials. Here, we present a general and simple method for noncovalent grafting on charge-neutral surfaces. Our method is based on the generic principle of counterion confinement in surface micropores. We demonstrate the power of this approach using a set of three platinum complexes: Pt1 (Pt1L4(BF4)2, L = p-picoline), Pt2 (Pt2L4(BF4)4, L = 2,6-bis(pyridine-3-ylethynyl)pyridine), and Pt12 (Pt12L24(BF4)24, L = 4,4′-(5-methoxy-1,3-phenylene)dipyridine). These complexes share the same counterion (BF4-) but differ vastly in their size, charge, and structure. Imaging of the grafted materials by aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (AC-HAADF-STEM) and energy-dispersive X-ray (EDX) showed that our method results in a homogeneous distribution of both complexes and counterions. Nitrogen sorption studies indicated a decrease in the available surface area and micropore volume, providing evidence for counterion confinement in the surface micropores. Following the adsorption of the complexes over time showed that this is a two-step process: fast surface adsorption by van der Waals forces was followed by migration over the surface and surface binding by counterion confinement. Regarding the binding of the complexes to the support, we found that the surface-adsorbate binding constant (KS) increases quadratically with the number of anions per complex up to KS = 1.6 × 106 M-1 equaling ΔG°ads = −35 kJ mol-1 for the surface binding of Pt12. Overall, our method has two important advantages: first, it is general, as you can anchor different complexes (with different charges, counterions, and/or sizes); second, it promotes the distribution of the complexes on the support surface, creating well-distributed sites that can be used in various applications across several areas of chemistry.</p

    Impacts of climate change on air pollution levels in the Northern Hemisphere with special focus on Europe and the Arctic

    Get PDF
    International audienceThe response of a selected number of chemical species is inspected with respect to climate change. The coupled Atmosphere-Ocean General Circulation Model ECHAM4-OPYC3 is providing meteorological fields for the Chemical long-range Transport Model DEHM. Three selected decades (1990s, 2040s and 2090s) are inspected. The 1990s are used as a reference and validation period. In this decade an evaluation of the output from the DEHM model with ECHAM4-OPYC3 meteorology input data is carried out. The model results are tested against similar model simulations with MM5 meteorology and against observations from the EMEP monitoring sites in Europe. The test results from the validation period show that the overall statistics (e.g. mean values and standard deviations) are similar for the two simulations. However, as one would expect the model setup with climate input data fails to predict correctly the timing of the variability in the observations. The overall performance of the ECHAM4-OPYC3 setup as meteorological input to the DEHM model is shown to be acceptable according to the applied ranking method. It is concluded that running a chemical long-range transport model on data from a "free run" climate model is scientifically sound. From the model runs of the three decades, it is found that the overall trend detected in the evolution of the chemical species, is the same between the 1990 decade and the 2040 decade and between the 2040 decade and the 2090 decade, respectively. The dominating impacts from climate change on a large number of the chemical species are related to the predicted temperature increase. Throughout the 21th century the ECHAM4-OPYC3 projects a global mean temperature increase of 3 K with local maxima up to 11 K in the Arctic winter based on the IPCC A2 emission scenario. As a consequence of this temperature increase, the temperature dependent biogenic emission of isoprene is predicted to increase significantly over land by the DEHM model. This leads to an increase in the O3 production and together with an increase in water vapor to an increase in the number of free OH radicals. Furthermore this increase in the number of OH radicals contributes to a significant change in the typical life time of many species, since OH are participating in a large number of chemical reactions. It is e.g. found that more SO42? will be present in the future over the already polluted areas and this increase can be explained by an enhanced conversion of SO2 to SO42?

    Decarbonisation and its discontents: a critical energy justice perspective on four low-carbon transitions

    Get PDF
    Low carbon transitions are often assumed as normative goods, because they supposedly reduce carbon emissions, yet without vigilance there is evidence that they can in fact create new injustices and vulnerabilities, while also failing to address pre-existing structural drivers of injustice in energy markets and the wider socio-economy. With this in mind, we examine four European low-carbon transitions from an unusual normative perspective: that of energy justice. Because a multitude of studies looks at the co-benefits renewable energy, low-carbon mobility, or climate change mitigation, we instead ask in this paper: what are the types of injustices associated with low-carbon transitions? Relatedly, in what ways do low-carbon transitions worsen social risks or vulnerabilities? Lastly, what policies might be deployed to make these transitions more just? We answer these questions by first elaborating an “energy justice” framework consisting of four distinct dimensions—distributive justice (costs and benefits), procedural justice (due process), cosmopolitan justice (global externalities), and recognition justice (vulnerable groups). We then examine four European low-carbon transitions—nuclear power in France, smart meters in Great Britain, electric vehicles in Norway, and solar energy in Germany—through this critical justice lens. In doing so, we draw from original data collected from 64 semi-structured interviews with expert partisans as well as five public focus groups and the monitoring of twelve internet forums. We document 120 distinct energy injustices across these four transitions, including 19 commonly recurring injustices. We aim to show how when low-carbon transitions unfold, deeper injustices related to equity, distribution, and fairness invariably arise
    • …
    corecore