31 research outputs found
Quantum affine Toda solitons
We review some of the progress in affine Toda field theories in recent years,
explain why known dualities cannot easily be extended, and make some
suggestions for what should be sought instead.Comment: 16pp, LaTeX. Minor revision
Sometimes needs change minds: Interests and values as determinants of attitudes towards state support for the self-employed during the COVID-19 crisis.
This contribution investigates public attitudes toward providing financial help to the self-employed, a less well-researched area in the otherwise vibrant literature on welfare state attitudes. We analyse to what extent the self-employed themselves soften their general anti-statist stance in times of need, and how the public thinks about supporting those who usually tend to oppose government interventions. To answer these questions, we study public attitudes towards providing financial aid to the self-employed during the lockdowns adopted in response to the COVID pandemic in Switzerland, using survey data collected in the spring and in the autumn of 2020. The results show that most respondents favour the provision of financial support. In addition, the self-employed are the staunchest supporters of the more generous forms of help, like non-refundable payments. We conclude that, when exposed to significant economic risk, need and interests override ideological preferences for less state intervention
The Elliptic Algebra U_{q,p}(sl_N^) and the Deformation of W_N Algebra
After reviewing the recent results on the Drinfeld realization of the face
type elliptic quantum group B_{q,lambda}(sl_N^) by the elliptic algebra
U_{q,p}(sl_N^), we investigate a fusion of the vertex operators of
U_{q,p}(sl_N^). The basic generating functions \Lambda_j(z) (j=1,2,.. N-1) of
the deformed W_N algebra are derived explicitly.Comment: 15 pages, to appear in Journal of physics A special issue - RAQIS0
Integrable Models From Twisted Half Loop Algebras
This paper is devoted to the construction of new integrable quantum
mechanical models based on certain subalgebras of the half loop algebra of
gl(N). Various results about these subalgebras are proven by presenting them in
the notation of the St Petersburg school. These results are then used to
demonstrate the integrability, and find the symmetries, of two types of
physical system: twisted Gaudin magnets, and Calogero-type models of particles
on several half-lines meeting at a point.Comment: 22 pages, 1 figure, Introduction improved, References adde
Integrability of Coupled Conformal Field Theories
The massive phase of two-layer integrable systems is studied by means of RSOS
restrictions of affine Toda theories. A general classification of all possible
integrable perturbations of coupled minimal models is pursued by an analysis of
the (extended) Dynkin diagrams. The models considered in most detail are
coupled minimal models which interpolate between magnetically coupled Ising
models and Heisenberg spin-ladders along the discrete series.Comment: 23 pages, four figure
Central extension of the reflection equations and an analog of Miki's formula
Two different types of centrally extended quantum reflection algebras are
introduced. Realizations in terms of the elements of the central extension of
the Yang-Baxter algebra are exhibited. A coaction map is identified. For the
special case of , a realization in terms of elements
satisfying the Zamolodchikov-Faddeev algebra - a `boundary' analog of Miki's
formula - is also proposed, providing a free field realization of
(q-Onsager) currents.Comment: 11 pages; two references added; to appear in J. Phys.
Generalized q-Onsager Algebras and Dynamical K-matrices
A procedure to construct -matrices from the generalized -Onsager
algebra \cO_{q}(\hat{g}) is proposed. This procedure extends the intertwiner
techniques used to obtain scalar (c-number) solutions of the reflection
equation to dynamical (non-c-number) solutions. It shows the relation between
soliton non-preserving reflection equations or twisted reflection equations and
the generalized -Onsager algebras. These dynamical -matrices are
important to quantum integrable models with extra degrees of freedom located at
the boundaries: for instance, in the quantum affine Toda field theories on the
half-line they yield the boundary amplitudes. As examples, the cases of
\cO_{q}(a^{(2)}_{2}) and \cO_{q}(a^{(1)}_{2}) are treated in details
Nested Bethe ansatz for `all' open spin chains with diagonal boundary conditions
We present in an unified and detailed way the nested Bethe ansatz for open
spin chains based on Y(gl(\fn)), Y(gl(\fm|\fn)), U_{q}(gl(\fn)) or
U_{q}(gl(\fm|\fn)) (super)algebras, with arbitrary representations (i.e.
`spins') on each site of the chain and diagonal boundary matrices
(K^+(u),K^-(u)). The nested Bethe anstaz applies for a general K^-(u), but a
particular form of the K^+(u) matrix.
The construction extends and unifies the results already obtained for open
spin chains based on fundamental representation and for some particular
super-spin chains. We give the eigenvalues, Bethe equations and the form of the
Bethe vectors for the corresponding models. The Bethe vectors are expressed
using a trace formula.Comment: 40 pages; examples of Bethe vectors added; Bethe equations for
U_q(gl(2/2)) added; misprints correcte
Statistical inference and the replication crisis
The replication crisis has prompted many to call for statistical reform within the psychological sciences. Here we examine issues within Frequentist statistics that may have led to the replication crisis, and we examine the alternativeâBayesian statisticsâthat many have suggested as a replacement. The Frequentist approach and the Bayesian approach offer radically different perspectives on evidence and inference with the Frequentist approach prioritising error control and the Bayesian approach offering a formal method for quantifying the relative strength of evidence for hypotheses. We suggest that rather than mere statistical reform, what is needed is a better understanding of the different modes of statistical inference and a better understanding of how statistical inference relates to scientific inference