Abstract

Two different types of centrally extended quantum reflection algebras are introduced. Realizations in terms of the elements of the central extension of the Yang-Baxter algebra are exhibited. A coaction map is identified. For the special case of Uq(sl2^)U_q(\hat{sl_2}), a realization in terms of elements satisfying the Zamolodchikov-Faddeev algebra - a `boundary' analog of Miki's formula - is also proposed, providing a free field realization of Oq(sl2^)O_q(\hat{sl_2}) (q-Onsager) currents.Comment: 11 pages; two references added; to appear in J. Phys.

    Similar works