465 research outputs found

    Platinum Cyclooctadiene Complexes with Activity against Gram-positive Bacteria

    Get PDF
    Antimicrobial resistance is a looming health crisis, and it is becoming increasingly clear that organic chemistry alone is not sufficient to continue to provide the world with novel and effective antibiotics. Recently there has been an increased number of reports describing promising antimicrobial properties of metal-containing compounds. Platinum complexes are well known in the field of inorganic medicinal chemistry for their tremendous success as anticancer agents. Here we report on the promising antibacterial properties of platinum cyclooctadiene (COD) complexes. Amongst the 15 compounds studied, the simplest compounds Pt(COD)X2_{2} (X=Cl, I, Pt1 and Pt2) showed excellent activity against a panel of Gram-positive bacteria including vancomycin and methicillin resistant Staphylococcus aureus. Additionally, the lead compounds show no toxicity against mammalian cells or haemolytic properties at the highest tested concentrations, indicating that the observed activity is specific against bacteria. Finally, these compounds showed no toxicity against Galleria mellonella at the highest measured concentrations. However, preliminary efficacy studies in the same animal model found no decrease in bacterial load upon treatment with Pt1 and Pt2. Serum exchange studies suggest that these compounds exhibit high serum binding which reduces their bioavailability in vivo, mandating alternative administration routes such as e. g. topical application

    A high quality Arabidopsis transcriptome for accurate transcript-level analysis of alternative splicing

    Get PDF
    Alternative splicing generates multiple transcript and protein isoforms from the same gene and thus is important in gene expression regulation. To date, RNA-sequencing (RNA-seq) is the standard method for quantifying changes in alternative splicing on a genome-wide scale. Understanding the current limitations of RNA-seq is crucial for reliable analysis and the lack of high quality, comprehensive transcriptomes for most species, including model organisms such as Arabidopsis, is a major constraint in accurate quantification of transcript isoforms. To address this, we designed a novel pipeline with stringent filters and assembled a comprehensive Reference Transcript Dataset for Arabidopsis (AtRTD2) containing 82,190 non-redundant transcripts from 34 212 genes. Extensive experimental validation showed that AtRTD2 and its modified version, AtRTD2-QUASI, for use in Quantification of Alternatively Spliced Isoforms, outperform other available transcriptomes in RNA-seq analysis. This strategy can be implemented in other species to build a pipeline for transcript-level expression and alternative splicing analyses

    Controversies in epilepsy: Debates held during the Fourth International Workshop on Seizure Prediction

    Get PDF
    Debates on six controversial topics were held during the Fourth International Workshop on Seizure Prediction (IWSP4) convened in Kansas City, KS, USA, July 4–7, 2009. The topics were (1) Ictogenesis: Focus versus Network? (2) Spikes and Seizures: Step-relatives or Siblings? (3) Ictogenesis: A Result of Hyposynchrony? (4) Can Focal Seizures Be Caused by Excessive Inhibition? (5) Do High-Frequency Oscillations Provide Relevant Independent Information? (6) Phase Synchronization: Is It Worthwhile as Measured? This article, written by the IWSP4 organizing committee and the debaters, summarizes the arguments presented during the debates

    Metal complexes as a promising source for new antibiotics

    Get PDF
    There is a dire need for new antimicrobial compounds to combat the growing threat of widespread antibiotic resistance. With a currently very scarce drug pipeline, consisting mostly of derivatives of known antibiotics, new classes of antibiotics are urgently required. Metal complexes are currently in clinical development for the treatment of cancer, malaria and neurodegenerative diseases. However, only little attention has been paid to their application as potential antimicrobial compounds. We report the evaluation of 906 metal-containing compounds that have been screened by the Community for Open Antimicrobial Drug Discovery (CO-ADD) for antimicrobial activity. Metal-bearing compounds display a significantly higher hit-rate (9.9%) when compared to the purely organic molecules (0.87%) in the CO-ADD database. Out of 906 compounds, 88 show activity against at least one of the tested strains, including fungi, while not displaying any cytotoxicity against mammalian cell lines or haemolytic properties. Herein, we highlight the structures of the 30 compounds with activity against Gram-positive and/or Gram-negative bacteria containing Mn, Co, Zn, Ru, Ag, Eu, Ir and Pt, with activities down to the nanomolar range against methicillin resistant S. aureus (MRSA). 23 of these complexes have not been reported for their antimicrobial properties before. This work reveals the vast diversity that metal-containing compounds can bring to antimicrobial research. It is important to raise awareness of these types of compounds for the design of truly novel antibiotics with potential for combatting antimicrobial resistance

    Mapping genomic loci implicates genes and synaptic biology in schizophrenia

    Get PDF
    Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies.</p

    Vitamin C in plasma is inversely related to blood pressure and change in blood pressure during the previous year in young Black and White women

    Get PDF
    BackgroundThe prevalence of hypertension and its contribution to cardiovascular disease risk makes it imperative to identify factors that may help prevent this disorder. Extensive biological and biochemical data suggest that plasma ascorbic acid may be such a factor. In this study we examined the association between plasma ascorbic acid concentration and blood pressure (BP) in young-adult women.MethodsParticipants were 242 Black and White women aged 18-21 yr from the Richmond, CA, cohort of the National Heart, Lung and Blood Institute Growth and Health Study. We examined the associations of plasma ascorbic acid with BP at follow-up year 10, and with change in BP during the previous year.ResultsIn cross-sectional analysis, plasma ascorbic acid at year 10 was inversely associated with systolic BP and diastolic BP after adjusting for race, body mass index, education, and dietary intake of fat and sodium. Persons in the highest one-fourth of the plasma ascorbic acid distribution had 4.66 mmHg lower systolic BP (95% CI 1.10 to 8.22 mmHg, p = 0.005) and 6.04 mmHg lower diastolic BP (95% CI 2.70 to 9.38 mmHg, p = 0.0002) than those in the lowest one-fourth of the distribution. In analysis of the change in BP, plasma ascorbic acid was also inversely associated with change in systolic BP and diastolic BP during the previous year. While diastolic blood pressure among persons in the lowest quartile of plasma ascorbic acid increased by 5.97 mmHg (95% CI 3.82 to 8.13 mmHg) from year 9 to year 10, those in the highest quartile of plasma vitamin C increased by only 0.23 mmHg (95% CI -1.90 to +2.36 mmHg) (test for linear trend: p &lt; 0.0001). A similar effect was seen for change in systolic BP, p = 0.005.ConclusionPlasma ascorbic acid was found to be inversely associated with BP and change in BP during the prior year. The findings suggest the possibility that vitamin C may influence BP in healthy young adults. Since lower BP in young adulthood may lead to lower BP and decreased incidence of age-associated vascular events in older adults, further investigation of treatment effects of vitamin C on BP regulation in young adults is warranted

    High-throughput mutational analysis of TOR1A in primary dystonia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although the c.904_906delGAG mutation in Exon 5 of <it>TOR1A </it>typically manifests as early-onset generalized dystonia, DYT1 dystonia is genetically and clinically heterogeneous. Recently, another Exon 5 mutation (c.863G>A) has been associated with early-onset generalized dystonia and some ΔGAG mutation carriers present with late-onset focal dystonia. The aim of this study was to identify <it>TOR1A </it>Exon 5 mutations in a large cohort of subjects with mainly non-generalized primary dystonia.</p> <p>Methods</p> <p>High resolution melting (HRM) was used to examine the entire <it>TOR1A </it>Exon 5 coding sequence in 1014 subjects with primary dystonia (422 spasmodic dysphonia, 285 cervical dystonia, 67 blepharospasm, 41 writer's cramp, 16 oromandibular dystonia, 38 other primary focal dystonia, 112 segmental dystonia, 16 multifocal dystonia, and 17 generalized dystonia) and 250 controls (150 neurologically normal and 100 with other movement disorders). Diagnostic sensitivity and specificity were evaluated in an additional 8 subjects with known ΔGAG DYT1 dystonia and 88 subjects with ΔGAG-negative dystonia.</p> <p>Results</p> <p>HRM of <it>TOR1A </it>Exon 5 showed high (100%) diagnostic sensitivity and specificity. HRM was rapid and economical. HRM reliably differentiated the <it>TOR1A </it>ΔGAG and c.863G>A mutations. Melting curves were normal in 250/250 controls and 1012/1014 subjects with primary dystonia. The two subjects with shifted melting curves were found to harbor the classic ΔGAG deletion: 1) a non-Jewish Caucasian female with childhood-onset multifocal dystonia and 2) an Ashkenazi Jewish female with adolescent-onset spasmodic dysphonia.</p> <p>Conclusion</p> <p>First, HRM is an inexpensive, diagnostically sensitive and specific, high-throughput method for mutation discovery. Second, Exon 5 mutations in <it>TOR1A </it>are rarely associated with non-generalized primary dystonia.</p

    Rab protein evolution and the history of the eukaryotic endomembrane system

    Get PDF
    Spectacular increases in the quantity of sequence data genome have facilitated major advances in eukaryotic comparative genomics. By exploiting homology with classical model organisms, this makes possible predictions of pathways and cellular functions currently impossible to address in intractable organisms. Echoing realization that core metabolic processes were established very early following evolution of life on earth, it is now emerging that many eukaryotic cellular features, including the endomembrane system, are ancient and organized around near-universal principles. Rab proteins are key mediators of vesicle transport and specificity, and via the presence of multiple paralogues, alterations in interaction specificity and modification of pathways, contribute greatly to the evolution of complexity of membrane transport. Understanding system-level contributions of Rab proteins to evolutionary history provides insight into the multiple processes sculpting cellular transport pathways and the exciting challenges that we face in delving further into the origins of membrane trafficking specificity
    corecore