1,351 research outputs found
Strict inequalities of critical values in continuum percolation
We consider the supercritical finite-range random connection model where the
points of a homogeneous planar Poisson process are connected with
probability for a given . Performing percolation on the resulting
graph, we show that the critical probabilities for site and bond percolation
satisfy the strict inequality . We also show
that reducing the connection function strictly increases the critical
Poisson intensity. Finally, we deduce that performing a spreading
transformation on (thereby allowing connections over greater distances but
with lower probabilities, leaving average degrees unchanged) {\em strictly}
reduces the critical Poisson intensity. This is of practical relevance,
indicating that in many real networks it is in principle possible to exploit
the presence of spread-out, long range connections, to achieve connectivity at
a strictly lower density value.Comment: 38 pages, 8 figure
Generation of large scale digital evaluation models via synthetic aperture radar interferometry
We investigate the possibility to generate a large-scale Digital Elevation Model by applying the Synthetic Aperture Radar interferometry technique and using tandem data acquired by the ERS-1/ERS-2 sensors. The presented study
is mainly focused on the phase unwrapping step that represents the most critical point of the overall processing chain. In particular, we concentrate on the unwrapping problems related to the use of a large ERS tandem data set that, in order to be unwrapped, must be partitioned. The paper discusses the inclusion of external information (even rough) of the scene topography, the application of a region growing unwrapping technique and the insertion of possible constraints on the phase to be
retrieved in order to minimize the global unwrapping errors. Our goal is the generation of a digital elevation model relative to an area of 300 km by 100km located in
the southern part of Italy. Comparisons between the achieved result and a precise digital terrain model, relative to a smaller area, are also included
New Toroidal Beam Antennas for WLAN Communications
[Abstract] The design of a number of new antennas that radiate linearly polarized toroidal beams is described. The developed procedures are based on the use of a method of moments commercial software tool. Several numerical examples, working at WLAN communication frequencies, are derived and analyzed. Two experimental prototypes validate the numerical result
Synthesis of Multi-Radial Line Antenna for HIPERLAN
This paper is a postprint of a paper submitted to and accepted for publication in journal Electronics Letters and is subject to Institution of Engineering and Technology Copyright. The copy of record is available at IET Digital Library"[Abstract] We present a new antenna concept - the multi-radial travelling wave line antenna - that achieves a broadband conical radiation pattern suitable for use in multiple C-band wireless
computer networks
Comment on "Quantum Confinement and Optical Gaps in Si Nanocrystals"
We show that the method used by Ogut, Chelikowsky and Louie (Phys. Rev. Lett.
79, 1770 (1997)) to calculate the optical gap of Si nanocrystals omits an
electron-hole polarization energy. When this contribution is taken into
account, the corrected optical gap is in excellent agreement with
semi-empirical pseudopotential calculations.Comment: 3 pages, 1 figur
Da agrariedade á ruralidade: Novos enfoques á economia territorial
In the first part the paper presents the evolution of the rural develoment theories from 50s to nowadays. Consequently, in the second part, it is addressed the issue of how the transition from subsistance economy, to traditional economy, to agricultural economy, to rural economy could delineate virtuous processes of local development in specific contexts. This concept is futher developed in the third part, where territorial development is analysed in accordance with international studies, and more specifically with European ones, and in the forth where the topic is critically focused in the framework of the Brazilean literature
Impact of boundaries on fully connected random geometric networks
Many complex networks exhibit a percolation transition involving a
macroscopic connected component, with universal features largely independent of
the microscopic model and the macroscopic domain geometry. In contrast, we show
that the transition to full connectivity is strongly influenced by details of
the boundary, but observe an alternative form of universality. Our approach
correctly distinguishes connectivity properties of networks in domains with
equal bulk contributions. It also facilitates system design to promote or avoid
full connectivity for diverse geometries in arbitrary dimension.Comment: 6 pages, 3 figure
A systematic review of single-bundle versus double-bundle anterior cruciate ligament reconstruction
n/
- …