61 research outputs found

    Development of a conceptual framework for integrated analysis and assessment of agricultural systems in SEAMLESS-IF

    Get PDF
    The report is divided into two parts. The first part describes basic concepts of systems analysis, sustainability and sustainable development, and integrated assessment and modelling that are potentially relevant for the present project. It further reviews the role of indicator, models, scenarios and case studies for impact assessments and provides information about possible technical solutions together with a general introduction into participatory methods including the communication of knowledge. The second part of the report describes the conceptual basis that is proposed for SEAMLESS-IF to enable integrated analysis and assessment of agricultural systems. Three levels of conceptualisation are distinguished and refer to: 1. delineation of the theoretical framework for analysis and assessment. 2. specification of the procedure (workflow) for analysis and assessment. 3. model formulatio

    A Generic Bio-Economic Farm Model for Environmental and Economic Assessment of Agricultural Systems

    Get PDF
    Bio-economic farm models are tools to evaluate ex-post or to assess ex-ante the impact of policy and technology change on agriculture, economics and environment. Recently, various BEFMs have been developed, often for one purpose or location, but hardly any of these models are re-used later for other purposes or locations. The Farm System Simulator (FSSIM) provides a generic framework enabling the application of BEFMs under various situations and for different purposes (generating supply response functions and detailed regional or farm type assessments). FSSIM is set up as a component-based framework with components representing farmer objectives, risk, calibration, policies, current activities, alternative activities and different types of activities (e.g., annual and perennial cropping and livestock). The generic nature of FSSIM is evaluated using five criteria by examining its applications. FSSIM has been applied for different climate zones and soil types (criterion 1) and to a range of different farm types (criterion 2) with different specializations, intensities and sizes. In most applications FSSIM has been used to assess the effects of policy changes and in two applications to assess the impact of technological innovations (criterion 3). In the various applications, different data sources, level of detail (e.g., criterion 4) and model configurations have been used. FSSIM has been linked to an economic and several biophysical models (criterion 5). The model is available for applications to other conditions and research issues, and it is open to be further tested and to be extended with new components, indicators or linkages to other models

    Kadir...

    Get PDF
    Taha Toros ArƟivi, Dosya No: 112-LokantalarÄ°stanbul Kalkınma Ajansı (TR10/14/YEN/0033) Ä°stanbul Development Agency (TR10/14/YEN/0033

    Bio-economic models applied to agricultural systems

    No full text
    International audienceThe bio-economic modeling approach presented in this book is a result of two distinct developments: by one side, the improvement of bio-physical simulation models applied to agricultural systems and by the other, the evolution of agricultural policies demanding a kind of assessment that conventional economic models are not able to provide. Some economists began to realize that biophysical models could be considered as detailed engineering production functions, allowing to represent in a consistent manner the joint products of agricultural activities. The perspectives that this vision provides allow dealing with environmental and natural resources issues with an economic perspective in an efficient manner. Representing environmental impacts of agricultural activities measured in physical units allows performing cost-efficiency calculations of alternative policies, potentially able to attain specified policy targets. This capability permitted in recent years the development of applied research related with institutional demands from national and international public institutions. But this approach requires a multidisciplinary approach, with positive and negative effects. The positive one is, both for economists and biophysical scientists, to enlarge their vision of the world. The negative effects are the greater difficulty to get recognized in their specific discipline, the obstacles to obtain the necessary information for properly use these models, and the longer time to perform the research activity. The “productivity” for producing papers is lower for economists applying this approach compared with economists applying econometric methods, using available published data. In spite of these negative effects, as the demands from the real world for the assessment these models are able to provide is increasing, it is quite possible that there is a future for bio-economic models applied to agricultural systems. The challenges of Climate Change, the increase care for the preservation of natural resources and the environment will require further developments of this kind of approach

    Bio-economic models applied to agricultural systems

    No full text
    International audienceThe bio-economic modeling approach presented in this book is a result of two distinct developments: by one side, the improvement of bio-physical simulation models applied to agricultural systems and by the other, the evolution of agricultural policies demanding a kind of assessment that conventional economic models are not able to provide. Some economists began to realize that biophysical models could be considered as detailed engineering production functions, allowing to represent in a consistent manner the joint products of agricultural activities. The perspectives that this vision provides allow dealing with environmental and natural resources issues with an economic perspective in an efficient manner. Representing environmental impacts of agricultural activities measured in physical units allows performing cost-efficiency calculations of alternative policies, potentially able to attain specified policy targets. This capability permitted in recent years the development of applied research related with institutional demands from national and international public institutions. But this approach requires a multidisciplinary approach, with positive and negative effects. The positive one is, both for economists and biophysical scientists, to enlarge their vision of the world. The negative effects are the greater difficulty to get recognized in their specific discipline, the obstacles to obtain the necessary information for properly use these models, and the longer time to perform the research activity. The “productivity” for producing papers is lower for economists applying this approach compared with economists applying econometric methods, using available published data. In spite of these negative effects, as the demands from the real world for the assessment these models are able to provide is increasing, it is quite possible that there is a future for bio-economic models applied to agricultural systems. The challenges of Climate Change, the increase care for the preservation of natural resources and the environment will require further developments of this kind of approach

    Dynamic optimisation problems: different resolution methods regarding agriculture and natural resource economics

    No full text
    Part I. Chapter 3International audienceThe need to take into account sustainability in agricultural resource management is now universally admitted. While the term “sustainability” can mean different things to different people, it always involves a consideration of the future. From an economic point of view, sustainability can be defined as an improvement of the performance of a system so as not to exhaust the basic natural resources on which its future performance depends (Pearce et al. 1990). This definition emphasizes the importance of preserving the natural resource base

    Modeling farm-household decisions under imperfect markets: a case study in Sierra Leone

    No full text
    AbstractInternational audienc
    • 

    corecore