121 research outputs found

    Studying the mass sensitivity of air-shower observables using simulated cosmic rays

    Full text link
    Using CORSIKA simulations, we investigate the mass sensitivity of cosmic-ray air-shower observables for sites at the South Pole and Malarg\"ue, Argentina, the respective locations of the IceCube Neutrino Observatory and the Pierre Auger Observatory. Exact knowledge of observables from air-shower simulations was used to study the event-by-event mass separation between proton, helium, oxygen, and iron primary cosmic rays with a Fisher linear discriminant analysis. Dependencies on the observation site as well as the energy and zenith angle of the primary particle were studied in the ranges from 1016.01018.510^{16.0}-10^{18.5}\,eV and 00^\circ to 6060^\circ: they are mostly weak and do not change the qualitative results. Promising proton-iron mass separation is achieved using combined knowledge of all studied observables, also when typical reconstruction uncertainties are accounted for. However, even with exact measurements, event-by-event separation of intermediate-mass nuclei is challenging and better methods than the Fisher discriminant and/or the inclusion of additional observables will be needed. As an individual observable, high-energy muons (>500> 500\,GeV) provide the best event-by-event mass discrimination, but the combination of muons of any energy and XmaxX_{\text{max}} provides already a high event-by-event separation between proton-iron primaries at both sites. We also confirm that the asymmetry and width parameters of the air-shower longitudinal profile, RR and LL, are mass sensitive. Only RR seems to be suitable for event-by-event mass separation, but LL can potentially be used to statistically determine the proton-helium ratio. Overall, our results motivate the coincident measurement of several air-shower observables, including at least XmaxX_{\text{max}} and the sizes of the muonic and electromagnetic shower components, for the next generation of air-shower experiments

    Gene products of chromosome 11q and their association with CCND1 gene amplification and tamoxifen resistance in premenopausal breast cancer

    Get PDF
    Introduction: The amplification event occurring at chromosome locus 11q13, reported in several different cancers, includes a number of potential oncogenes. We have previously reported amplification of one such oncogene, namely CCND1, to be correlated with an adverse effect of tamoxifen in premenopausal breast cancer patients. Over-expression of cyclin D-1 protein, however, confers tamoxifen resistance but not a tamoxifen-induced adverse effect. Potentially, co-amplification of an additional 11q13 gene, with a resulting protein over-expression, is required to cause an agonistic effect. Moreover, during 11q13 amplification a deletion of the distal 11q region has been described. In order to assess the potential impact of the deletion we examined a selected marker for this event. Method: Array comparative genomic hybridization analysis was employed to identify and confirm changes in the gene expression of a number of different genes mapping to the 11q chromosomal region, associated with CCND1 amplification. The subsequent protein expression of these candidate genes was then examined in a clinical material of 500 primary breast cancers from premenopausal patients who were randomly assigned to either tamoxifen or no adjuvant treatment. The protein expression was also compared with gene expression data in a subset of 56 breast cancer samples. Results: Cortactin and FADD (Fas-associated death domain) over-expression was linked to CCND1 amplification, determined by fluorescence in situ hybridization, but was not associated with a diminished effect of tamoxifen. However, deletion of distal chromosome 11q, defined as downregulation of the marker Chk1 (checkpoint kinase 1), was associated with an impaired tamoxifen response, and interestingly with low proliferative breast cancer of low grade. For Pak1 (p21-activated kinase 1) and cyclin D-1 the protein expression corresponded to the gene expression data. Conclusions: The results indicate that many 11q13 associated gene products are over-expressed in conjunction with cyclin D-1 but not linked to an agonistic effect of tamoxifen. Finally, the deletion of distal 11q, linked to 11q13 amplification, might be an important event affecting breast cancer outcome and tamoxifen response

    The Pierre Auger Observatory Open Data

    Full text link
    The Pierre Auger Collaboration has embraced the concept of open access to their research data since its foundation, with the aim of giving access to the widest possible community. A gradual process of release began as early as 2007 when 1% of the cosmic-ray data was made public, along with 100% of the space-weather information. In February 2021, a portal was released containing 10% of cosmic-ray data collected from 2004 to 2018, during Phase I of the Observatory. The Portal included detailed documentation about the detection and reconstruction procedures, analysis codes that can be easily used and modified and, additionally, visualization tools. Since then the Portal has been updated and extended. In 2023, a catalog of the 100 highest-energy cosmic-ray events examined in depth has been included. A specific section dedicated to educational use has been developed with the expectation that these data will be explored by a wide and diverse community including professional and citizen-scientists, and used for educational and outreach initiatives. This paper describes the context, the spirit and the technical implementation of the release of data by the largest cosmic-ray detector ever built, and anticipates its future developments.Comment: 19 pages, 8 figure

    Impact of the magnetic horizon on the interpretation of the Pierre Auger Observatory spectrum and composition data

    Get PDF

    A Catalog of the Highest-energy Cosmic Rays Recorded during Phase I of Operation of the Pierre Auger Observatory

    Get PDF
    A catalog containing details of the highest-energy cosmic rays recorded through the detection of extensive air-showers at the Pierre Auger Observatory is presented with the aim of opening the data to detailed examination. Descriptions of the 100 showers created by the highest-energy particles recorded between 1 January 2004 and 31 December 2020 are given for cosmic rays that have energies in the range 78 EeV to 166 EeV. Details are also given of a further nine very-energetic events that have been used in the calibration procedure adopted to determine the energy of each primary. A sky plot of the arrival directions of the most energetic particles is shown. No interpretations of the data are offered

    Constraining the sources of ultra-high-energy cosmic rays across and above the ankle with the spectrum and composition data measured at the Pierre Auger Observatory

    Get PDF
    In this work we present the interpretation of the energy spectrum and mass composition data as measured by the Pierre Auger Collaboration above 6×10176 \times 10^{17} eV. We use an astrophysical model with two extragalactic source populations to model the hardening of the cosmic-ray flux at around 5×10185\times 10^{18} eV (the so-called "ankle" feature) as a transition between these two components. We find our data to be well reproduced if sources above the ankle emit a mixed composition with a hard spectrum and a low rigidity cutoff. The component below the ankle is required to have a very soft spectrum and a mix of protons and intermediate-mass nuclei. The origin of this intermediate-mass component is not well constrained and it could originate from either Galactic or extragalactic sources. To the aim of evaluating our capability to constrain astrophysical models, we discuss the impact on the fit results of the main experimental systematic uncertainties and of the assumptions about quantities affecting the air shower development as well as the propagation and redshift distribution of injected ultra-high-energy cosmic rays (UHECRs).Comment: Submitted to JCA

    Testing Hadronic-Model Predictions of Depth of Maximum of Air-Shower Profiles and Ground-Particle Signals using Hybrid Data of the Pierre Auger Observatory

    Full text link
    We test the predictions of hadronic interaction models regarding the depth of maximum of air-shower profiles, XmaxX_{max}, and ground-particle signals in water-Cherenkov detectors at 1000 m from the shower core, S(1000)S(1000), using the data from the fluorescence and surface detectors of the Pierre Auger Observatory. The test consists in fitting the measured two-dimensional (S(1000)S(1000), XmaxX_{max}) distributions using templates for simulated air showers produced with hadronic interaction models EPOS-LHC, QGSJet II-04, Sibyll 2.3d and leaving the scales of predicted XmaxX_{max} and the signals from hadronic component at ground as free fit parameters. The method relies on the assumption that the mass composition remains the same at all zenith angles, while the longitudinal shower development and attenuation of ground signal depend on the mass composition in a correlated way. The analysis was applied to 2239 events detected by both the fluorescence and surface detectors of the Pierre Auger Observatory with energies between 1018.510^{18.5} to 1019.010^{19.0} eV and zenith angles below 6060^\circ. We found, that within the assumptions of the method, the best description of the data is achieved if the predictions of the hadronic interaction models are shifted to deeper XmaxX_{max} values and larger hadronic signals at all zenith angles. Given the magnitude of the shifts and the data sample size, the statistical significance of the improvement of data description using the modifications considered in the paper is larger than 5σ5\sigma even for any linear combination of experimental systematic uncertainties.Comment: Published versio

    Radio Measurements of the Depth of Air-Shower Maximum at the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA), part of the Pierre Auger Observatory, is currently the largest array of radio antenna stations deployed for the detection of cosmic rays, spanning an area of 1717 km2^2 with 153 radio stations. It detects the radio emission of extensive air showers produced by cosmic rays in the 308030-80 MHz band. Here, we report the AERA measurements of the depth of the shower maximum (XmaxX_\text{max}), a probe for mass composition, at cosmic-ray energies between 1017.510^{17.5} to 1018.810^{18.8} eV, which show agreement with earlier measurements with the fluorescence technique at the Pierre Auger Observatory. We show advancements in the method for radio XmaxX_\text{max} reconstruction by comparison to dedicated sets of CORSIKA/CoREAS air-shower simulations, including steps of reconstruction-bias identification and correction, which is of particular importance for irregular or sparse radio arrays. Using the largest set of radio air-shower measurements to date, we show the radio XmaxX_\text{max} resolution as a function of energy, reaching a resolution better than 1515 g cm2^{-2} at the highest energies, demonstrating that radio XmaxX_\text{max} measurements are competitive with the established high-precision fluorescence technique. In addition, we developed a procedure for performing an extensive data-driven study of systematic uncertainties, including the effects of acceptance bias, reconstruction bias, and the investigation of possible residual biases. These results have been cross-checked with air showers measured independently with both the radio and fluorescence techniques, a setup unique to the Pierre Auger Observatory.Comment: Submitted to Phys. Rev.

    Constraining models for the origin of ultra-high-energy cosmic rays with a novel combined analysis of arrival directions, spectrum, and composition data measured at the Pierre Auger Observatory

    Get PDF
    corecore