1,526 research outputs found
Finite element analysis of periodic transonic flow problems
Flow about an oscillating thin airfoil in a transonic stream was considered. It was assumed that the flow field can be decomposed into a mean flow plus a periodic perturbation. On the surface of the airfoil the usual Neumman conditions are imposed. Two computer programs were written, both using linear basis functions over triangles for the finite element space. The first program uses a banded Gaussian elimination solver to solve the matrix problem, while the second uses an iterative technique, namely SOR. The only results obtained are for an oscillating flat plate
Iron single crystal growth from a lithium-rich melt
\alpha-Fe single crystals of rhombic dodecahedral habit were grown from a
melt of LiNFe. Crystals of several millimeter along a
side form at temperatures around C. Upon further cooling
the growth competes with the formation of Fe-doped LiN. The b.c.c.
structure and good sample quality of \alpha-Fe single crystals were confirmed
by X-ray and electron diffraction as well as magnetization measurements and
chemical analysis. A nitrogen concentration of 90\,ppm was detected by means of
carrier gas hot extraction. Scanning electron microscopy did not reveal any
sign of iron nitride precipitates.Comment: 13 pages, 4 figure
Unified derivation of phase-field models for alloy solidification from a grand-potential functional
In the literature, two quite different phase-field formulations for the
problem of alloy solidification can be found. In the first, the material in the
diffuse interfaces is assumed to be in an intermediate state between solid and
liquid, with a unique local composition. In the second, the interface is seen
as a mixture of two phases that each retain their macroscopic properties, and a
separate concentration field for each phase is introduced. It is shown here
that both types of models can be obtained by the standard variational procedure
if a grand-potential functional is used as a starting point instead of a
free-energy functional. The dynamical variable is then the chemical potential
instead of the composition. In this framework, a complete analogy with
phase-field models for the solidification of a pure substance can be
established. This analogy is then exploited to formulate quantitative
phase-field models for alloys with arbitrary phase diagrams. The precision of
the method is illustrated by numerical simulations with varying interface
thickness.Comment: 36 pages, 1 figur
Evaluation of ECMWF water vapour fields by airborne differential absorption lidar measurements: a case study between Brazil and Europe
International audienceThree extended airborne Differential Absorption Lidar (DIAL) sections of tropospheric water vapour across the tropical and sub-tropical Atlantic in March 2004 are compared to short-term forecasts of the European Centre for Medium Range Weather Forecasts (ECMWF). The humidity fields between 28° S and 36° N exhibit large inter air-mass gradients and reflect typical transport patterns of low- and mid-latitudes like convection (e.g. Hadley circulation), subsidence and baroclinic development with stratospheric intrusion. These processes re-distribute water vapour vertically such that locations with extraordinary dry/moist air-masses are observed in the lower/upper troposphere, respectively. The mixing ratios range over 3 orders of magnitude. Back-trajectories are used to trace and characterize the observed air-masses. Overall, the observed water vapour distributions are largely reproduced by the short-term forecasts at 0.25° resolution (T799/L91), the correlation ranges from 0.69 to 0.92. Locally, large differences occur due to comparably small spatial shifts in presence of strong gradients. Systematic deviations are found associated with specific atmospheric domains. The planetary boundary layer in the forecast is too moist and to shallow. Convective transport of humidity to the middle and upper troposphere tends to be overestimated. Potential impacts arising from data assimilation and model physics are considered. The matching of air-mass boundaries (transport) is discussed with repect to scales and the representativity of the 2-D sections for the 3-D humidity field. The normalized bias of the model with respect to the observations is 6%, 11% and 0% (moist model biases) for the three along-flight sections, whereby however the lowest levels are excluded
Ferromagnetism or slow paramagnetic relaxation in Fe-doped LiN?
We report on isothermal magnetization, M\"ossbauer spectroscopy, and
magnetostriction as well as temperature-dependent alternating-current (ac)
susceptibility, specific heat, and thermal expansion of single crystalline and
polycrstalline Li(LiFe)N with and .
Magnetic hysteresis emerges at temperatures below K with
coercivity fields of up to T at K and magnetic
anisotropy energies of K (meV). The ac susceptibility is strongly
frequency dependent (--Hz) and reveals an effective energy
barrier for spin reversal of K. The relaxation times
follow Arrhenius behavior for K. For K, however, the
relaxation times of s are only weakly
temperature-dependent indicating the relevance of a quantum tunneling process
instead of thermal excitations. The magnetic entropy amounts to more than
J molK which significantly exceeds ln2, the
value expected for the entropy of a ground state doublet. Thermal expansion and
magnetostriction indicate a weak magneto-elastic coupling in accordance with
slow relaxation of the magnetization. The classification of
Li(LiFe)N as ferromagnet is stressed and contrasted with highly
anisotropic and slowly relaxing paramagnetic behavior.Comment: 12 pages, 10 figure
Incoherent Photoproduction of -mesons from the Deuteron near Threshold
Incoherent photoproduction of the -meson on the deuteron is studied for
photon energies from threshold to 800 MeV. The dominant contribution, the
N-N amplitude, is described within an isobar model. The final
state interaction derived from the CD-Bonn potential is included and found to
be important for the description of the production cross section close to
threshold. Possible effects from the final state interaction are
discussed.Comment: 11 pages, revtex, including 6 figure
First airborne water vapor lidar measurements in the tropical upper troposphere and mid-latitudes lower stratosphere: accuracy evaluation and intercomparisons with other instruments
In the tropics, deep convection is the major source of uncertainty in water vapor transport to the upper troposphere and into the stratosphere. Although accurate measurements in this region would be of first order importance to better understand the processes that govern stratospheric water vapor concentrations and trends in the context of a changing climate, they are sparse because of instrumental shortcomings and observational challenges. Therefore, the Falcon research aircraft of the Deutsches Zentrum für Luft- und Raumfahrt (DLR) flew a zenith-viewing water vapor differential absorption lidar (DIAL) during the Tropical Convection, Cirrus and Nitrogen Oxides Experiment (TROCCINOX) in 2004 and 2005 in Brazil. The measurements were performed alternatively on three water vapor absorption lines of different strength around 940 nm. These are the first aircraft DIAL measurements in the tropical upper troposphere and in the mid-latitudes lower stratosphere. Sensitivity analyses reveal an accuracy of 5% between altitudes of 8 and 16 km. This is confirmed by intercomparisons with the Fast In-situ Stratospheric Hygrometer (FISH) and the Fluorescent Advanced Stratospheric Hygrometer (FLASH) onboard the Russian M-55 Geophysica research aircraft during five coordinated flights. The average relative differences between FISH and DIAL amount to −3%±8% and between FLASH and DIAL to −8%±14%, negative meaning DIAL is more humid. The average distance between the probed air masses was 129 km. The DIAL is found to have no altitude- or latitude-dependent bias. A comparison with the balloon ascent of a laser absorption spectrometer gives an average difference of 0%±19% at a distance of 75 km. Six tropical DIAL under-flights of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on board ENVISAT reveal a mean difference of −8%±49% at an average distance of 315 km. While the comparison with MIPAS is somewhat less significant due to poorer comparison conditions, the agreement with the in-situ hygrometers provides evidence of the excellent quality of FISH, FLASH and DIAL. Most DIAL profiles exhibit a smooth exponential decrease of water vapor mixing ratio in the tropical upper troposphere to lower stratosphere transition. The hygropause with a minimum mixing ratio of 2.5 µmol/mol is found between 15 and 17 km. A high-resolution (2 km horizontal, 0.2 km vertical) DIAL cross section through the anvil outflow of tropical convection shows that the ambient humidity is increased by a factor of three across 100 km
Sensitivity studies for a space-based methane lidar mission
Methane is the third most important greenhouse gas in the atmosphere after water vapour and carbon dioxide. A major handicap to quantify the emissions at the Earth's surface in order to better understand biosphere-atmosphere exchange processes and potential climate feedbacks is the lack of accurate and global observations of methane. Space-based integrated path differential absorption (IPDA) lidar has potential to fill this gap, and a Methane Remote Lidar Mission (MERLIN) on a small satellite in polar orbit was proposed by DLR and CNES in the frame of a German-French climate monitoring initiative. System simulations are used to identify key performance parameters and to find an advantageous instrument configuration, given the environmental, technological, and budget constraints. The sensitivity studies use representative averages of the atmospheric and surface state to estimate the measurement precision, i.e. the random uncertainty due to instrument noise. Key performance parameters for MERLIN are average laser power, telescope size, orbit height, surface reflectance, and detector noise. A modest-size lidar instrument with 0.45 W average laser power and 0.55 m telescope diameter on a 506 km orbit could provide 50-km averaged methane column measurement along the sub-satellite track with a precision of about 1% over vegetation. The use of a methane absorption trough at 1.65 μm improves the near-surface measurement sensitivity and vastly relaxes the wavelength stability requirement that was identified as one of the major technological risks in the pre-phase A studies for A-SCOPE, a space-based IPDA lidar for carbon dioxide at the European Space Agency. Minimal humidity and temperature sensitivity at this wavelength position will enable accurate measurements in tropical wetlands, key regions with largely uncertain methane emissions. In contrast to actual passive remote sensors, measurements in Polar Regions will be possible and biases due to aerosol layers and thin ice clouds will be minimised
Solar Flare Intermittency and the Earth's Temperature Anomalies
We argue that earth's short-term temperature anomalies and the solar flare
intermittency are linked. The analysis is based upon the study of the scaling
of both the spreading and the entropy of the diffusion generated by the
fluctuations of the temperature time series. The joint use of these two methods
evidences the presence of a L\'{e}vy component in the temporal persistence of
the temperature data sets that corresponds to the one that would be induced by
the solar flare intermittency. The mean monthly temperature datasets cover the
period from 1856 to 2002.Comment: 4 pages, 5 figure
Polarization observables of the gamma d --> PiNN reaction in the Delta(1232)-resonance region
Polarization observables of the three charge states of the pion for the
reaction with polarized photon beam and/or oriented
deuteron target are evaluated over the whole (1232)-resonance region
adopting a nonrelativistic model based on time-ordered perturbation theory.
Results for the -meson spectra, linear photon asymmetry, vector and tensor
target asymmetries are presented. Particular attention is given, for the first
time, to double polarization asymmetries for which we present results for
and . We found that all other double
polarization asymmetries of photon and deuteron target are vanished.Comment: 17 Pages, 8 Figures, accepted for publication in Int. J. Mod. Phys.
- …
