1,244 research outputs found
Jasmonic acid methyl ester induces xylogenesis and modulates auxin-induced xylary cell identity with NO Involvement
In Arabidopsis basal hypocotyls of dark-grown seedlings, xylary cells may form from the pericycle as an alternative to adventitious roots. Several hormones may induce xylogenesis, as Jasmonic acid (JA), as well as indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) auxins, which also affect xylary identity. Studies with the ethylene (ET)-perception mutant ein3eil1 and the ET-precursor 1-aminocyclopropane-1-carboxylic acid (ACC), also demonstrate ET involvement in IBA-induced ectopic metaxylem. Moreover, nitric oxide (NO), produced after IBA/IAA-treatments, may affect JA signalling and interact positively/negatively with ET. To date, NO-involvement in ET/JA-mediated xylogenesis has never been investigated. To study this, and unravel JA-effects on xylary identity, xylogenesis was investigated in hypocotyls of seedlings treated with JA methyl-ester (JAMe) with/without ACC, IBA, IAA. Wild-type (wt) and ein3eil1 responses to hormonal treatments were compared, and the NO signal was quantified and its role evaluated by using NO-donors/scavengers. Ectopic-protoxylem increased in the wt only after treatment with JAMe(10 μM), whereas in ein3eil1 with any JAMe concentration. NO was detected in cells leading to either xylogenesis or adventitious rooting, and increased after treatment with JAMe(10 μM) combined or not with IBA(10 μM). Xylary identity changed when JAMe was applied with each auxin. Altogether, the results show that xylogenesis is induced by JA and NO positively regulates this process. In addition, NO also negatively interacts with ET-signalling and modulates auxin-induced xylary identity
Nitric oxide alleviates cadmium- but not arsenic-induced damages in rice roots
Nitric oxide (NO) has signalling roles in plant stress responses. Cadmium (Cd) and arsenic (As) soil pollutants alter plant development, mainly the root-system, by increasing NO-content, triggering reactive oxygen species (ROS), and forming peroxynitrite by NO-reaction with the superoxide anion. Interactions of NO with ROS and peroxynitrite seem important for plant tolerance to heavy metal(oid)s, but the mechanisms underlying this process remain unclear. Our goal was to investigate NO-involvement in rice (Oryza sativa L.) root-system after exposure to Cd or As, to highlight possible differences in NO-behaviour between the two pollutants. To the aim, morpho-histological, chemical and epifluorescence analyses were carried out on roots of different origin in the root-system, under exposure to Cd or As, combined or not with sodium nitroprusside (SNP), a NO-donor compound. Results show that increased intracellular NO levels alleviate the root-system alterations induced by Cd, i.e., inhibition of adventitious root elongation and lateral root formation, increment in lignin deposition in the sclerenchyma/endodermis cell-walls, but, even if reducing As-induced endodermis lignification, do not recover the majority of the As-damages, i.e., enhancement of AR-elongation, reduction of LR-formation, anomalous tissue-proliferation. However, NO decreases both Cd and As uptake, without affecting the pollutants translocation-capability from roots to shoots. Moreover, NO reduces the Cd-induced, but not the As-induced, ROS levels by triggering peroxynitrite production. Altogether, results highlight a different behaviour of NO in modulating rice root-system response to the toxicity of the heavy metal Cd and the metalloid As, which depends by the NO-interaction with the specific pollutant
Cadmium and arsenic affect root development in Oryza sativa L. negatively interacting with auxin
Cadmium (Cd) and arsenic (As), non essential, but toxic, elements for animals and plants are frequently present in paddy fields. Oryza sativa L., a staple food for at least the half of world population, easily absorbs As and Cd by the root, and in this organ the pollutants evoke consistent damages, reducing/modifying the root system. Auxins are key hormones in regulating all developmental processes, including root organogenesis. Moreover, plants respond to environmental stresses, such as those caused by Cd and As, by changing levels and distribution of endogenous phytohormones. Even though the effects of Cd and As on the roots have been investigated in some species, it remains necessary to deepen the knowledge about the cross-talk between these toxic elements and auxin during root formation and development, in particular in agronomically important plants, such as rice. Hence, the research goal was to investigate the interactions between Cd and As, alone or combined, and auxin during the development of rice roots. To reach the aim, morphological, histological and histochemical analyses were carried out on seedlings, exposed or not to Cd and/or As, belonging to the wild type and transgenic lines useful for monitoring indole-3-acetic acid (IAA) localization, i.e., OsDR5:GUS, and IAA cellular influx and efflux, i.e., OsAUX1:GUS and OsPIN5b:GUS. Moreover, the transcript levels of the YUCCA2 and ASA2, IAA biosynthetic genes were also monitored in Cd and/or As exposed wild type seedlings. The results highlight that As and Cd affect cyto-histology and morphology of the roots. In particular, they alter the lateral root primordia organization and development with negative consequences on root system architecture. This is due to a disturbance of IAA biosynthesis and transport, as indicated by the altered expression of both ASA2 and YUCCA2 biosynthetic genes, and AUX1 and PIN5b transporter genes
In vivo silencing of genes coding for dTip60 chromatin remodeling complex subunits affects polytene chromosome organization and proper development in Drosophila melanogaster
Chromatin organization is developmentally regulated by epigenetic changes mediated by histone‐modifying enzymes and chromatin remodeling complexes. In Drosophila melanogaster, the Tip60 chromatin remodeling complex (dTip60) play roles in chromatin regulation, which are shared by evolutionarily‐related complexes identified in animal and plants. Recently, it was found that most subunits previously assigned to the dTip60 complex are shared by two related complexes, DOM‐A.C and DOM‐B.C, defined by DOM‐A and DOM‐B isoforms, respectively. In this work, we combined classical genetics, cell biology, and reverse genetics approaches to further investigate the biological roles played during Drosophila melanogaster development by a number of subunits originally assigned to the dTip60 complex
Activity of drugs against dormant Mycobacterium tuberculosis
AbstractObjective/backgroundHeterogeneous mixtures of cellular and caseous granulomas coexist in the lungs of tuberculosis (TB) patients, with Mycobacterium tuberculosis (Mtb) existing from actively replicating (AR) to dormant, nonreplicating (NR) stages. Within cellular granulomas, the pH is estimated to be less than 6, whereas in the necrotic centres of hypoxic, cholesterol/triacylglycerol-rich, caseous granulomas, the pH varies between 7.2 and 7.4. To combat TB, we should kill both AR and NR stages of Mtb. Dormant Mtb remodels lipids of its cell wall, and so lipophilic drugs may be active against NR Mtb living in caseous, lipid-rich, granulomas. Lipophilicity is expressed as logP, that is, the logarithm of the partition coefficient (P) ratio Poctanol/Pwater. In this study, the activity of lipophilic drugs (logP>0) and hydrophilic drugs (logP⩽0) against AR and NR Mtb was measured in hypoxic conditions under acidic and slightly alkaline pHs.MethodsThe activity of drugs was determined against AR Mtb (5-day-old aerobic cells: A5) and NR Mtb (12- and 19-day-old hypoxic cells: H12 and H19) in a Wayne dormancy model of Mtb H37Rv at pH 5.8, to mimic the environment of cellular granulomas. Furthermore, AR and NR bacilli were grown for 40days in Wayne models at pH 6.6, 7.0, 7.4, and 7.6, to set up conditions mimicking the caseous granulomas (hypoxia+slightly alkaline pH), to measure drug activity against NR cells. Mtb viability was determined by colony-forming unit (CFU) counts.ResultsAt pH 5.8, lipophilic drugs (rifampin, rifapentine, bedaquiline, PA-824, clofazimine, nitazoxanide: logP⩾2.14) reduced CFU of all cells (H12, H19, and A5) by ⩾2log10. Among hydrophilic drugs (isoniazid, pyrazinamide, ethambutol, amikacin, moxifloxacin, metronidazole: logP⩽0.01), none reduced H12 and H19 CFUs by ⩾2log10, with the exception of metronidazole. When Mtb was grown at different pHs the following Mtb growth was noted: at pH 6.6, AR cells grew fluently while NR cells grew less, with a CFU increase up to Day 15, followed by a drop to Day 40. AR and NR Mtb grown at pH 7.0, 7.4, and 7.6 showed up to 1 log10 CFU lower than their growth at pH 6.6. The pHs of all AR cultures tended to reach pH 7.2–7.4 on Day 40. The pHs of all NR cultures remained stable at their initial values (6.6, 7.0, 7.4, and 7.6) up to Day 40. The activity of drugs against H12 and H19 cells was tested in hypoxic conditions at a slightly alkaline pH. Under these conditions, some lipophilic drugs were more active (>5 log CFU decrease after 21days of exposure) against H12 and H19 cells than clofazimine, nitazoxanide, isoniazid, pyrazinamide, amikacin (<1 log CFU decrease after 21days of exposure). Testing of other drugs is in progress.ConclusionLipophilic drugs were more active than hydrophilic agents against dormant Mtb in hypoxic conditions at pH 5.8. The Wayne model under slightly alkaline conditions was set up, and in hypoxic conditions at a slightly alkaline pH some lipophilic drugs were more active than other drugs against NR Mtb. Overall, these models can be useful for testing drug activity against dormant Mtb under conditions mimicking the environments of cellular and caseous granulomas
Fine-scale fern ecological responses inform on riparian forest habitat conservation status
The recognition of the ecological quality of ecosystems and habitats therein is increasingly important in the Anthropocene. However, there are still scarcely explored ways of how and what to assess to obtain a sound ecological status of habitats. Ferns are an understudied plant group, especially given their usefulness as ecological indicators. Disentangling biotic and abiotic factors that drive fine-scale fern distribution could provide insight into the quality of their habitats. We investigated the environmental factors affecting the distribution of different largely distributed fern species in Europe. We studied their presence and abundance at different life stages in a forest habitat of European priority conservation concern. Our aim was to understand whether fern species can be used as an ecological indicator group in riparian alderwood habitat. We sampled 120 plots of 50 m(2) in randomly selected transects along streams of a riparian forest habitat characterized by the presence of many fern species in the understory, controlling for the effects of geology and elevation. Within each plot, fern species were recorded, including vegetative and generative stages of each ramet (rosette of fronds). We modelled fern occurrence and abundance for the different fern life stages, and diversity indices of the fern community in relation to environmental predictors. We found that population- and community-level responses of ferns mainly depended on soil granulometry and, to a lesser extent, moss cover and stream orientation. We also found that the generative life stage compared to the vegetative adult stage benefits from different ecological characteristics for certain fern species. Alterations of the natural hydrology might lead to a general deterioration in habitat quality for ferns. We suggest that some fern species acting as early-warning species, and potentially their life stages, can be used as an ecological quality indicator for riparian forest habitats. This study deepened the understanding of the fine-scale ecology of an array of European ferns in riparian forests and provides valuable information to assist in the conservation of fern species and their populations
Jasmonate promotes auxin-induced adventitious rooting in dark-grown Arabidopsis thaliana seedlings and stem thin cell layers by a cross-talk with ethylene signalling and a modulation of xylogenesis
Background: Adventitious roots (ARs) are often necessary for plant survival, and essential for successful micropropagation. In Arabidopsis thaliana dark-grown seedlings AR-formation occurs from the hypocotyl and is enhanced by application of indole-3-butyric acid (IBA) combined with kinetin (Kin). The same IBA + Kin-treatment induces AR-formation in thin cell layers (TCLs). Auxin is the main inducer of AR-formation and xylogenesis in numerous species and experimental systems. Xylogenesis is competitive to AR-formation in Arabidopsis hypocotyls and TCLs. Jasmonates (JAs) negatively affect AR-formation in de-etiolated Arabidopsis seedlings, but positively affect both AR-formation and xylogenesis in tobacco dark-grown IBA + Kin TCLs. In Arabidopsis the interplay between JAs and auxin in AR-formation vs xylogenesis needs investigation. In de-etiolated Arabidopsis seedlings, the Auxin Response Factors ARF6 and ARF8 positively regulate AR-formation and ARF17 negatively affects the process, but their role in xylogenesis is unknown. The cross-talk between auxin and ethylene (ET) is also important for AR-formation and xylogenesis, occurring through EIN3/EIL1 signalling pathway. EIN3/EIL1 is the direct link for JA and ET-signalling. The research investigated JA role on AR-formation and xylogenesis in Arabidopsis dark-grown seedlings and TCLs, and the relationship with ET and auxin. The JA-donor methyl-jasmonate (MeJA), and/or the ET precursor 1-aminocyclopropane-1-carboxylic acid were applied, and the response of mutants in JA-synthesis and -signalling, and ET-signalling investigated. Endogenous levels of auxin, JA and JA-related compounds, and ARF6, ARF8 and ARF17 expression were monitored. Results: MeJA, at 0.01 μM, enhances AR-formation, when combined with IBA + Kin, and the response of the early-JA-biosynthesis mutant dde2–2 and the JA-signalling mutant coi1–16 confirmed this result. JA levels early change during TCL-culture, and JA/JA-Ile is immunolocalized in AR-tips and xylogenic cells. The high AR-response of the late JA-biosynthesis mutant opr3 suggests a positive action also of 12-oxophytodienoic acid on AR-formation. The crosstalk between JA and ET-signalling by EIN3/EIL1 is critical for AR-formation, and involves a competitive modulation of xylogenesis. Xylogenesis is enhanced by a MeJA concentration repressing AR-formation, and is positively related to ARF17 expression. Conclusions: The JA concentration-dependent role on AR-formation and xylogenesis, and the interaction with ET opens the way to applications in the micropropagation of recalcitrant species
- …