21,283 research outputs found
A comparison of ISCCP and FIRE satellite cloud parameters
One of the goals of the First ISCCP Regional Experiment (FIRE) is the quantification of the uncertainties in the cloud parameter products derived by the International Satellite Cloud Climatology Project (ISCCP). This validation effort has many facets including sensitivity analyses and comparisons to similar data or theoretical results with known accuracies. The FIRE provides cloud-truth data at particular points or along particular lines from surface and aircraft measurement systems. Relating these data to the larger, area-averaged ISCCP results requires intermediate steps using higher resolution satellite data analyses. Errors in the cloud products derived with a particular method can be determined by performing analyses of high resolution satellite data over the area surrounding the point or line measurement. This same analysis technique may then be used to derive cloud parameters over a larger area containing similar cloud fields. It is assumed that the uncertainties found for the small scale analyses are the same for the large scale so that the method has been calibrated for the particular cloud type; i.e., its accuracy is known. Differences between the large scale results using the ISCCP technique and the calibrated method can be computed and used to determine if any significant biases or rms errors occur in the ISCCP results. Selected ISCCP results are compared to cloud parameters derived using the hybrid bispectral threshold method over the FIRE IFO and extended observation areas
Satellite-derived cloud fields during the FIRE cirrus IFO case study
The First ISCCP Regional Experiment (FIRE) Cirrus Intensive Field Observation (IFO) program measured cirrus cloud properties with a variety of instruments from the surface, aircraft, and satellites. Surface and aircraft observations provide a small scale point and line measurements of different micro- and macro-physical properties of advecting and evolving cloud systems. Satellite radiance data may be used to measure the areal variations of the bulk cloud characteristics over meso- and large scales. Ideally, the detailed cloud properties derived from the small scale measurements should be tied to the bulk cloud properties typically derived from the satellite data. Full linkage of these data sets for a comprehensive description of a given cloud field, one of the goals of FIRE, should lead to significant progress in understanding, measuring, and modeling cirrus cloud systems. The relationships derived from intercomparisons of lidar and satellite data by Minnis et al. are exploited in a mesoscale analysis of the satellite data taken over Wisconsin during the Cirrus IFO case study
ERBE and AVHRR Cirrus cloud fire study
Understanding the impact of cirrus clouds on the global radiation budget is essential to determining the role of clouds in the process of climate change. The ongoing Earth Radiation Budget Experiment (ERBE) is charged with measuring the global radiation balance at the top of the atmosphere. The International Satellite Cloud Climatology Project (ISCCP) is measuring global cloud amounts and properties over a time frame similar to ERBE. Specific cloud properties are absent from the ERBE program, while ISCCP lacks the broadband radiances necessary to determine the total radiation fields. Together, results from these two global programs have the potential for improving the knowledge of the relationship between cirrus clouds and the Earth radiation balance. The First ISCCP Regional Experiment (FIRE), especially its cirrus Intensive Field Observations (IFO), provides opportunities for studying radiation measurements from the ERBE taken over areas with known cirrus cloud properties. Satellite measurements taken during the IFO are used to determine the broadband radiation fields over cirrus clouds and to examine the relationship between narrowband and broadband radiances over various known scenes. The latter constitutes the link between the ERBE and the ISCCP
Monte Carlo Simulation of Deffuant opinion dynamics with quality differences
In this work the consequences of different opinion qualities in the Deffuant
model were examined. If these qualities are randomly distributed, no different
behavior was observed. In contrast to that, systematically assigned qualities
had strong effects to the final opinion distribution. There was a high
probability that the strongest opinion was one with a high quality.
Furthermore, under the same conditions, this major opinion was much stronger
than in the models without systematic differences. Finally, a society with
systematic quality differences needed more tolerance to form a complete
consensus than one without or with unsystematic ones.Comment: 8 pages including 5 space-consuming figures, fir Int. J. Mod. Phys. C
15/1
THE EFFECTS OF RISK MANAGEMENT STRATEGIES WITH DIVERSIFIED HOG/CROP PRODUCTION
Risk management strategies were compared using a corn/soybean farm, a hog farm, and a diversified hog/crop farm. Results suggest risk management tools are more effective in combinations, hog/crop diversification shows limited risk reducing benefits, and the effects of choosing among risk management tools may be overemphasized.Agribusiness, Risk and Uncertainty,
Magnetic Fields in Stellar Jets
Although several lines of evidence suggest that jets from young stars are
driven magnetically from accretion disks, existing observations of field
strengths in the bow shocks of these flows imply that magnetic fields play only
a minor role in the dynamics at these locations. To investigate this apparent
discrepancy we performed numerical simulations of expanding magnetized jets
with stochastically variable input velocities with the AstroBEAR MHD code.
Because the magnetic field B is proportional to the density n within
compression and rarefaction regions, the magnetic signal speed drops in
rarefactions and increases in the compressed areas of velocity-variable flows.
In contrast, B ~ n^0.5 for a steady-state conical flow with a toroidal field,
so the Alfven speed in that case is constant along the entire jet. The
simulations show that the combined effects of shocks, rarefactions, and
divergent flow cause magnetic fields to scale with density as an intermediate
power 1 > p > 0.5. Because p > 0.5, the Alfven speed in rarefactions decreases
on average as the jet propagates away from the star. This behavior is extremely
important to the flow dynamics because it means that a typical Alfven velocity
in the jet close to the star is significantly larger than it is in the
rarefactions ahead of bow shocks at larger distances, the one place where the
field is a measurable quantity. We find that the observed values of weak fields
at large distances are consistent with strong fields required to drive the
observed mass loss close to the star. For a typical stellar jet the crossover
point inside which velocity perturbations of 30 - 40 km/s no longer produce
shocks is ~ 300 AU from the source
Ultrathin oxides: bulk-oxide-like model surfaces or unique films?
To better understand the electronic and chemical properties of wide-gap oxide
surfaces at the atomic scale, experimental work has focused on epitaxial films
on metal substrates. Recent findings show that these films are considerably
thinner than previously thought. This raises doubts about the transferability
of the results to surface properties of thicker films and bulk crystals. By
means of density-functional theory and approximate GW corrections for the
electronic spectra we demonstrate for three characteristic wide-gap oxides
(silica, alumina, and hafnia) the influence of the substrate and highlight
critical differences between the ultrathin films and surfaces of bulk
materials. Our results imply that monolayer-thin oxide films have rather unique
properties.Comment: 5 pages, 3 figures, accepted by PR
Comparison of in situ aerosol measurements with SAGE 2 and SAM 2 aerosol measurements during the airborne Antarctic ozone experiment
Models indicate that stratospheric aerosols play a major role in the destruction of ozone during the Austral winter. Although many in situ measurements of stratospheric aerosols were made during the Airborne Antarctic Ozone Experiment, changes of aerosol concentration and size distributions across the polar vortex are important to understanding changes of chemical species taking place during this time. Therefore comparing the in situ measurements with measurements made by satellites scanning wider areas will give a clearer picture of the possible role played by aerosols during this period. The wire impactor size distributions are compared to those from the aerosol spectrometers and a best fit size distribution determined. Aerosol extinctions are calculated from the in situ measurements and compared to the extinctions measured by the satellites. Five comparisons are made with SAGE 2 and four with SAM 2. Extinctions agree as close as a factor of two
Seasonal Variability of Saturn's Tropospheric Temperatures, Winds and Para-H from Cassini Far-IR Spectroscopy
Far-IR 16-1000 m spectra of Saturn's hydrogen-helium continuum measured
by Cassini's Composite Infrared Spectrometer (CIRS) are inverted to construct a
near-continuous record of upper tropospheric (70-700 mbar) temperatures and
para-H fraction as a function of latitude, pressure and time for a third of
a Saturnian year (2004-2014, from northern winter to northern spring). The
thermal field reveals evidence of reversing summertime asymmetries superimposed
onto the belt/zone structure. The temperature structure that is almost
symmetric about the equator by 2014, with seasonal lag times that increase with
depth and are qualitatively consistent with radiative climate models. Localised
heating of the tropospheric hazes (100-250 mbar) create a distinct perturbation
to the temperature profile that shifts in magnitude and location, declining in
the autumn hemisphere and growing in the spring. Changes in the para-H
() distribution are subtle, with a 0.02-0.03 rise over the spring
hemisphere (200-500 mbar) perturbed by (i) low- air advected by both the
springtime storm of 2010 and equatorial upwelling; and (ii) subsidence of
high- air at northern high latitudes, responsible for a developing
north-south asymmetry in . Conversely, the shifting asymmetry in the
para-H disequilibrium primarily reflects the changing temperature structure
(and the equilibrium distribution of ), rather than actual changes in
induced by chemical conversion or transport. CIRS results interpolated to
the same point in the seasonal cycle as re-analysed Voyager-1 observations show
qualitative consistency, with the exception of the tropical tropopause near the
equatorial zones and belts, where downward propagation of a cool temperature
anomaly associated with Saturn's stratospheric oscillation could potentially
perturb tropopause temperatures, para-H and winds. [ABRIDGED]Comment: Preprint accepted for publication in Icarus, 29 pages, 18 figure
- …