5,400 research outputs found
Efficient solvability of Hamiltonians and limits on the power of some quantum computational models
We consider quantum computational models defined via a Lie-algebraic theory.
In these models, specified initial states are acted on by Lie-algebraic quantum
gates and the expectation values of Lie algebra elements are measured at the
end. We show that these models can be efficiently simulated on a classical
computer in time polynomial in the dimension of the algebra, regardless of the
dimension of the Hilbert space where the algebra acts. Similar results hold for
the computation of the expectation value of operators implemented by a
gate-sequence. We introduce a Lie-algebraic notion of generalized mean-field
Hamiltonians and show that they are efficiently ("exactly") solvable by means
of a Jacobi-like diagonalization method. Our results generalize earlier ones on
fermionic linear optics computation and provide insight into the source of the
power of the conventional model of quantum computation.Comment: 6 pages; no figure
Ag on Ge(111): 2D X-ray structure analysis of the (Wurzel)3 x (Wurzel)3 superstructure
We have studied the Ag/Ge(111)(Wurzel)3 x (Wurzel)3 superstructure by grazing-incidence X-ray diffraction. In our structural analysis we find striking similarities to the geometry of Au on Si(111). The Ag atoms form trimer clusters with an Ag-Ag distance of 2.94+-0.04°A with the centers of the trimers being located at the origins of the (Wurzel)3 x (Wurzel)3 lattice. The Ag layer is incomplete and at least one substrate layer is distorted
Word service for grades one through six
Thesis (Ed.M.)--Boston Universit
Removal of the center of mass in nuclei and its effects on 4He
Abstract The singular value decomposition of rectangular matrices is shown to provide the recipe for removing the center of mass spurious admixtures from the multiphonon basis generated by an equation of motion method for solving the nuclear eigenvalue problem. It works for any single particle basis without any energy restriction on the selection of the configurations. Its effects on 4He are illustrated
The hot and cold interstellar matter of early type galaxies and their radio emission
Over the last few years, the knowledge of the interstellar matter (ISM) of early type galaxies has increased dramatically. Many early type galaxies are now known to have ISM in three different phases: cold (neutral hydrogen (HI), dust and molecular material), warm (ionized) and hot (S-ray emitting) gas. Early type galaxies have smaller masses of cold ISM (10 to the 7th power - 10 to the 8th power solar mass; Jura et al. 1987) than later type spiral galaxies, while they have far more hot gas (10 to the 9th power - 10 to the tenth power solar mass; Forman et al. 1985, Canizares et al. 1987). In order to understand the relationship between the different phases of the ISM and the role of the ISM in fueling radio continuum sources and star formation, researchers compared observational data from a wide range of wavelengths
Cavitation inception of a van der Waals fluid at a sack-wall obstacle
Cavitation in a liquid moving past a constraint is numerically investigated
by means of a free-energy lattice Boltzmann simulation based on the van der
Waals equation of state. The fluid is streamed past an obstacle and, depending
on the pressure drop between inlet and outlet, vapor formation underneath the
corner of the sack-wall is observed. The circumstances of cavitation formation
are investigated and it is found that the local bulk pressure and mean stress
are insufficient to explain the phenomenon. Results obtained in this study
strongly suggest that the viscous stress, interfacial contributions to the
local pressure, and the Laplace pressure are relevant to the opening of a vapor
cavity. This can be described by a generalization of Joseph's criterion that
includes these contributions. A macroscopic investigation measuring mass flow
rate behavior and discharge coefficient was also performed. As theoretically
predicted, mass flow rate increases linearly with the square root of the
pressure drop. However, when cavitation occurs, the mass flow growth rate is
reduced and eventually it collapses into a choked flow state. In the cavitating
regime, as theoretically predicted and experimentally verified, the discharge
coefficient grows with the Nurick cavitation number
Kinematics of elliptical galaxies with a diffuse dust component
Observations show that early-type galaxies contain a considerable amount of
interstellar dust, most of which is believed to exist as a diffusely
distributed component. We construct a four-parameter elliptical galaxy model in
order to investigate the effects of such a smooth absorbing component on the
projection of kinematic quantities, such as the line profiles and their
moments. We investigate the dependence on the optical depth and on the dust
geometry. Our calculations show that both the amplitude and the morphology of
these quantities can be significantly affected. Dust effects should therefore
be taken in consideration when interpreting photometric and kinematic
properties, and correlations that utilize these quantities.Comment: 12 pages, 9 figures, accepted for publication in MNRA
- …