160 research outputs found

    Mod-Gaussian convergence and its applications for models of statistical mechanics

    Full text link
    In this paper we complete our understanding of the role played by the limiting (or residue) function in the context of mod-Gaussian convergence. The question about the probabilistic interpretation of such functions was initially raised by Marc Yor. After recalling our recent result which interprets the limiting function as a measure of "breaking of symmetry" in the Gaussian approximation in the framework of general central limit theorems type results, we introduce the framework of L1L^1-mod-Gaussian convergence in which the residue function is obtained as (up to a normalizing factor) the probability density of some sequences of random variables converging in law after a change of probability measure. In particular we recover some celebrated results due to Ellis and Newman on the convergence in law of dependent random variables arising in statistical mechanics. We complete our results by giving an alternative approach to the Stein method to obtain the rate of convergence in the Ellis-Newman convergence theorem and by proving a new local limit theorem. More generally we illustrate our results with simple models from statistical mechanics.Comment: 49 pages, 21 figure

    The accuracy of merging approximation in generalized St. Petersburg games

    Full text link
    Merging asymptotic expansions of arbitrary length are established for the distribution functions and for the probabilities of suitably centered and normalized cumulative winnings in a full sequence of generalized St. Petersburg games, extending the short expansions due to Cs\"org\H{o}, S., Merging asymptotic expansions in generalized St. Petersburg games, \textit{Acta Sci. Math. (Szeged)} \textbf{73} 297--331, 2007. These expansions are given in terms of suitably chosen members from the classes of subsequential semistable infinitely divisible asymptotic distribution functions and certain derivatives of these functions. The length of the expansion depends upon the tail parameter. Both uniform and nonuniform bounds are presented.Comment: 30 pages long version (to appear in Journal of Theoretical Probability); some corrected typo

    An improvement of the Berry--Esseen inequality with applications to Poisson and mixed Poisson random sums

    Full text link
    By a modification of the method that was applied in (Korolev and Shevtsova, 2009), here the inequalities ρ(Fn,Φ)0.335789(β3+0.425)n\rho(F_n,\Phi)\le\frac{0.335789(\beta^3+0.425)}{\sqrt{n}} and ρ(Fn,Φ)0.3051(β3+1)n\rho(F_n,\Phi)\le \frac{0.3051(\beta^3+1)}{\sqrt{n}} are proved for the uniform distance ρ(Fn,Φ)\rho(F_n,\Phi) between the standard normal distribution function Φ\Phi and the distribution function FnF_n of the normalized sum of an arbitrary number n1n\ge1 of independent identically distributed random variables with zero mean, unit variance and finite third absolute moment β3\beta^3. The first of these inequalities sharpens the best known version of the classical Berry--Esseen inequality since 0.335789(β3+0.425)0.335789(1+0.425)β3<0.4785β30.335789(\beta^3+0.425)\le0.335789(1+0.425)\beta^3<0.4785\beta^3 by virtue of the condition β31\beta^3\ge1, and 0.4785 is the best known upper estimate of the absolute constant in the classical Berry--Esseen inequality. The second inequality is applied to lowering the upper estimate of the absolute constant in the analog of the Berry--Esseen inequality for Poisson random sums to 0.3051 which is strictly less than the least possible value of the absolute constant in the classical Berry--Esseen inequality. As a corollary, the estimates of the rate of convergence in limit theorems for compound mixed Poisson distributions are refined.Comment: 33 page

    Fractal iso-contours of passive scalar in smooth random flows

    Full text link
    We consider a passive scalar field under the action of pumping, diffusion and advection by a smooth flow with a Lagrangian chaos. We present theoretical arguments showing that scalar statistics is not conformal invariant and formulate new effective semi-analytic algorithm to model the scalar turbulence. We then carry massive numerics of passive scalar turbulence with the focus on the statistics of nodal lines. The distribution of contours over sizes and perimeters is shown to depend neither on the flow realization nor on the resolution (diffusion) scale rdr_d for scales exceeding rdr_d. The scalar isolines are found fractal/smooth at the scales larger/smaller than the pumping scale LL. We characterize the statistics of bending of a long isoline by the driving function of the L\"owner map, show that it behaves like diffusion with the diffusivity independent of resolution yet, most surprisingly, dependent on the velocity realization and the time of scalar evolution

    Lectures on Gaussian approximations with Malliavin calculus

    Get PDF
    In a seminal paper of 2005, Nualart and Peccati discovered a surprising central limit theorem (called the "Fourth Moment Theorem" in the sequel) for sequences of multiple stochastic integrals of a fixed order: in this context, convergence in distribution to the standard normal law is equivalent to convergence of just the fourth moment. Shortly afterwards, Peccati and Tudor gave a multidimensional version of this characterization. Since the publication of these two beautiful papers, many improvements and developments on this theme have been considered. Among them is the work by Nualart and Ortiz-Latorre, giving a new proof only based on Malliavin calculus and the use of integration by parts on Wiener space. A second step is my joint paper "Stein's method on Wiener chaos" (written in collaboration with Peccati) in which, by bringing together Stein's method with Malliavin calculus, we have been able (among other things) to associate quantitative bounds to the Fourth Moment Theorem. It turns out that Stein's method and Malliavin calculus fit together admirably well. Their interaction has led to some remarkable new results involving central and non-central limit theorems for functionals of infinite-dimensional Gaussian fields. The current survey aims to introduce the main features of this recent theory. It originates from a series of lectures I delivered at the Coll\`ege de France between January and March 2012, within the framework of the annual prize of the Fondation des Sciences Math\'ematiques de Paris. It may be seen as a teaser for the book "Normal Approximations Using Malliavin Calculus: from Stein's Method to Universality" (jointly written with Peccati), in which the interested reader will find much more than in this short survey.Comment: 72 pages. To be published in the S\'eminaire de Probabilit\'es. Mild update: typos, referee comment

    Ecosystem Services from Small Forest Patches in Agricultural Landscapes

    Full text link
    corecore