In this paper we complete our understanding of the role played by the
limiting (or residue) function in the context of mod-Gaussian convergence. The
question about the probabilistic interpretation of such functions was initially
raised by Marc Yor. After recalling our recent result which interprets the
limiting function as a measure of "breaking of symmetry" in the Gaussian
approximation in the framework of general central limit theorems type results,
we introduce the framework of L1-mod-Gaussian convergence in which the
residue function is obtained as (up to a normalizing factor) the probability
density of some sequences of random variables converging in law after a change
of probability measure. In particular we recover some celebrated results due to
Ellis and Newman on the convergence in law of dependent random variables
arising in statistical mechanics. We complete our results by giving an
alternative approach to the Stein method to obtain the rate of convergence in
the Ellis-Newman convergence theorem and by proving a new local limit theorem.
More generally we illustrate our results with simple models from statistical
mechanics.Comment: 49 pages, 21 figure