research

The accuracy of merging approximation in generalized St. Petersburg games

Abstract

Merging asymptotic expansions of arbitrary length are established for the distribution functions and for the probabilities of suitably centered and normalized cumulative winnings in a full sequence of generalized St. Petersburg games, extending the short expansions due to Cs\"org\H{o}, S., Merging asymptotic expansions in generalized St. Petersburg games, \textit{Acta Sci. Math. (Szeged)} \textbf{73} 297--331, 2007. These expansions are given in terms of suitably chosen members from the classes of subsequential semistable infinitely divisible asymptotic distribution functions and certain derivatives of these functions. The length of the expansion depends upon the tail parameter. Both uniform and nonuniform bounds are presented.Comment: 30 pages long version (to appear in Journal of Theoretical Probability); some corrected typo

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 04/12/2019