
Dolera Journal of Inequalities and Applications 2013, 2013:320
http://www.journalofinequalitiesandapplications.com/content/2013/1/320

RESEARCH Open Access

Estimates of the approximation of weighted
sums of conditionally independent random
variables by the normal law
Emanuele Dolera*

*Correspondence:
emanuele.dolera@unimore.it;
emanuele.dolera@unipv.it
Dipartimento di Matematica Pura e
Applicata, Università di Modena e
Reggio Emilia, via Campi 213/b,
Modena, 41125, Italy

Abstract
A Berry-Esseen-like inequality is provided for the difference between the
characteristic function of a weighted sum of conditionally independent random
variables and the characteristic function of the standard normal law. Some
applications and possible extensions of the main result are also illustrated.
MSC: 60F05; 60G50

Keywords: Berry-Esseen inequalities; central limit theorem; completely monotone
function; conditional independence; Taylor formula

1 Introduction andmain result
Berry-Esseen inequalities are currently considered, within the realm of the central limit
problem of probability theory, as a powerful tool to evaluate the error in approximating
the law of a standardized sum of independent random variables (r.v.’s) by the normal dis-
tribution. The classical version of the statement at issue is due, independently, to Berry []
and to Esseen [], and it is condensed into the well-known inequality

sup
x∈R

∣∣Fn(x) –G(x)
∣∣ ≤ C

m

σ 
√
n

()

valid for a given a sequence {ξn}n≥ of non-degenerate, independent and identically dis-
tributed (i.i.d.) real-valued r.v.’s such that m := E[|ξ|] < +∞. Here, C is a universal con-
stant, σ  stands for the variance Varξ and Fn, G denote the distribution functions

Fn(x) := P
[∑n

j=(ξj – Eξj)√
nσ 

≤ x
]

and G(x) :=
∫ x

–∞
√
π

e–u
/ du,

respectively. The proof of () is based on the evaluation of an upper bound for themodulus
of the difference between the characteristic function (c.f.) ϕn(t) :=

∫
R
eitx dFn(x) and the c.f.

e–t/ of the standard normal distribution. See, for example, Theorems - in Chapter  of
[]. In fact, under the above hypotheses on {ξn}n≥, one can prove that

∣∣ϕn(t) – e–t
/∣∣ ≤ 

m

σ 
√
n

|t|e–t/ ()

© 2013 Dolera; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.journalofinequalitiesandapplications.com/content/2013/1/320
mailto:emanuele.dolera@unimore.it
mailto:emanuele.dolera@unipv.it
http://creativecommons.org/licenses/by/2.0


Dolera Journal of Inequalities and Applications 2013, 2013:320 Page 2 of 21
http://www.journalofinequalitiesandapplications.com/content/2013/1/320

holds for every t ∈ [– σ√n
m

, σ√n
m

], while an analogous estimate for the first two derivatives
can be also obtained with a bit of work, namely

∣∣∣∣ dldtl
(
ϕn(t) – e–t

/)∣∣∣∣ ≤ C
m

σ 
√
n

(|t|–l + |t|+l)e–t/ ()

for all t ∈ [– σ√n
m

, σ√n
m

] and l = , , C being another suitable constant. As a reference for
()-(), see, e.g., Lemma  in Chapter  and Lemma  in Chapter  of [], respectively.
Due to a significant and constantly updating employment of Berry-Esseen-like inequal-

ities in different areas of pure and applied mathematics - such as stochastic processes,
mathematical statistics, Markov chain Monte Carlo, random graphs, combinatorics, cod-
ing theory and kinetic theory of gases - the researchers have tried to continuously general-
ize this kind of estimates. Confining ourselves to the case of a limiting distribution coincid-
ingwith the standard normal law, themain lines of research can be summarized as follows:
() Taking account of different kinds of stochastic dependence - typically, less restrictive
than the i.i.d. setting - such as the case of sequences of independent, non-identically dis-
tributed r.v.’s (see Chapters - of [] and the recent papers [–]), martingales [], ex-
changeable r.v.’s [] and Markov processes []. () Evaluation of the discrepancy between
Fn and G by means of probability metrics different from the Kolmogorov distance, i.e., the
LHS of (). Classical references are Chapters - of [], Chapters - of [] and Chap-
ters - of [], while a more recent treatment is contained in []. Strong metrics, such as
total variation or entropy metrics, are dealt with in [–]. () Formulation of different
hypotheses about the moments, both in the direction of weakening (i.e., considering mo-
ments of order + δ, with δ ∈ (, )) or sharpening (i.e., considering the kth moments with
k > ) the initial assumption m < +∞. The above-mentioned references are comprehen-
sive also of this kind of variants.
The present paper contains some generalizations of the Berry-Esseen estimate, which

fall within the three aforementioned lines of research, by starting from the main state-
ment (Theorem  below) reminiscent of inequalities ()-(). To present the main result in
a framework as general as possible, we consider a weighted sum of the form

Sn :=
n∑
j=

cjξj, ()

where the cj ’s are constants satisfying

n∑
j=

cj =  ()

and the ξj ’s are conditionally independent r.v.’s, possibly non-identically distributed. To for-
malize this point, we assume that there exist a probability space (�,F ,P) and a sub-σ -
algebra H of F such that

P[ξ ∈ A, . . . , ξn ∈ An | H ] =
n∏
j=

P[ξj ∈ Aj | H ] ()
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holds almost surely (a.s.) for any A, . . . ,An in the Borel class B(R). We also assume that

E[ξj | H ] =  ()

holds a.s. for j = , . . . ,n, and that

max
j=,...,n

esssup
ω∈�

E
[|ξj| | H ]

(ω) =:m < +∞ ()

is in force. Then, after putting ϕn(t) := E[eitSn ] and defining the entities

X :=
n∑
j=

cj
∣∣E[ξ 

j
]
– 

∣∣,

Y :=

∣∣∣∣∣
n∑
j=

cj E
[
ξ 
j
]∣∣∣∣∣,

W :=m

n∑
j=

cj ,

Z := E

[( n∑
j=

cj E
[
ξ 
j | H ]

– 

)]
,

τ :=


W–/,

T :=

{
ω ∈ �

∣∣∣ n∑
j=

cj E
[
ξ 
j | H ]

(ω) ≤ /

}
,

we state our main result.

Theorem  Under assumptions ()-() one has

∣∣∣∣ dldtl
(
ϕn(t) – e–t

/)∣∣∣∣ ≤ E
[∣∣∣∣ dldtl

E
[
eitSn | H ]∣∣∣∣1T

]
+ u,l(t)X

+ u,l(t)Y + u,l(t)W + vl(t)Z ()

for every t in [–τ , τ ] and l = , , ,where u,l , u,l , u,l , vl are rapidly decreasing continuous
functions, which can be put into the form ctr( + tm)e–t/c with r,m ∈ N and c, c > 
explicitly.

The general setting of this theorem is suitable to treat a vast number of standard cases.
For example, in the simplest situation of a sequence {ξn}n≥ of i.i.d. r.v.’s with E[ξ] = ,
E[ξ 

 ] =  and E[ξ
 ] =m < +∞, one can put H = F to get E[ξ 

 | H ] =  a.s. and, conse-
quently, X = Z = P(T) = . Whence,

∣∣∣∣ dldtl
(
ϕn(t) – e–t

/)∣∣∣∣ ≤ u,l(t)
∣∣E[ξ 


]∣∣ ·

∣∣∣∣∣
n∑
j=

cj

∣∣∣∣∣ + u,l(t)E
[
ξ

] n∑

j=

cj ()
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holds for all t such that |t| ≤ 
m

–/
 (

∑n
j= cj )–/ and l = , , . Therefore, after noting that

u,(t) and u,(t) have a standard form with r ≥ , a plain application of Theorems - in
Chapter  of [] leads to an inequality of the type of (), with a rate of convergence to zero
proportional to |∑n

j= cj | and
∑n

j= cj , provided that these two quantities go to zero when
n diverges. Moreover, when the additional hypothesis |E[eitξ ]| = o(|t|–p), for |t| → +∞, is
in force with some p >  (to be compared with () in []), it is possible to deduce a bound
for the normal approximationw.r.t. the total variation distance, by following the argument
developed in []. Indeed, starting fromProposition . therein (Beurling’s inequality), one
can write

sup
A∈B(R)

∣∣∣∣∣P
[ n∑

j=

cjξj ∈ A

]
–

√
π

∫
A
e–x

/ dx

∣∣∣∣∣
≤ C

∑
l=

(∫
R

∣∣∣∣ dldtl
(
ϕn(t) – e–t

/)∣∣∣∣


dt
)/

()

with a suitable constant C. Then, one can bound the RHS from above exactly as in Sec-
tion  of the quoted paper. In general, it should be noticed that () reduces to a more
standard inequality with Y and W only, whenever the ξj ’s are properly scaled w.r.t. con-
ditional variances (i.e., when E[ξ 

j | H ] =  holds a.s. for j = , . . . ,n). In the less trivial
case of independent, non-identically distributed r.v.’s, with E[ξj] =  for j = , . . . ,n and
maxj=,...,n E[ξ

j ] := m < +∞, one can take again H = F to show that the normalization
of Sn w.r.t. variance reduces to

∑n
j= cj E[ξ 

j | H ] =  a.s. Since Z = P(T) =  ensues from
this condition, the RHS of () assumes again a nice form with X, Y and W only. Now, we
do not linger further on these standard applications of (), since we deem more conve-
nient to stress the role of the unusual terms like E[| dl

dtl E[e
itSn | H ]|1T ], X and Z, and to

comment on the utility of formulating Theorem  in the general framework of condition-
ally independent r.v.’s, which, being a novelty in this study, has motivated the drafting of
this paper. As an illustrative example, we consider, on (�,F ,P), a sequence X = {Xj}j≥ of
independent r.v.’s and a random function f̃ , taking values in some subset F of the space of
all measurable, uniformly bounded functions f :R →R (i.e., for which there existsM > 
such that |f (x)| ≤ M for all x ∈ R and f ∈ F ), which is stochastically independent of X.
Putting ξj := f̃ (Xj) for all j ∈ N and H := σ (f̃ ), and assuming that E[f (Xj)] =  for all j ∈ N

and f ∈F , we have that ()-() are fulfilled. At this stage, it is worth recalling that a num-
ber of problems in pure and applied statistics, such as filtering and reproducing kernel
Hilbert space estimates, can be formulated within this framework and would be greatly
enhanced by the knowledge of the error in approximating the law of the sum √

n
∑n

j= ξj by
the normal distribution. See [], and also [] for a Bayesian viewpoint. Then Theorem 
entails the following corollary.

Corollary  Suppose that supA∈B(R) | n
∑n

j= μj(A) – μ(A)| := αn converges to zero as
n diverges, where μj(·) := P[Xj ∈ ·] and μ is a suitable probability measure satisfying
E[

∫
R
f̃ (x)μ(dx)] = . Suppose further that E[| n

∑n
j=

∫
R
f̃  (x)μj(dx) –

∫
R
f̃  (x)μ(dx)|] := δn

converges to zero as n diverges, where f̃ and f̃ are two independent copies of f̃ . If

sup
f∈F

∫
|t|≥ n/

M

∣∣∣∣∣ d
l

dtl

n∏
j=

E
[
eitf (Xj)/

√
n]∣∣∣∣∣



dt := βn,l ()
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satisfies limn→+∞ βn,l =  for l = , , then there is a constant C such that

sup
A∈B(R)

∣∣∣∣∣P
[

√
n

n∑
j=

ξj ∈ A

]
–

√
π

∫
A
e–x

/ dx

∣∣∣∣∣
≤ Cmax

{
√
n
,αn, δn,

√
βn,,

√
βn,

}

is valid for all n ∈N.

To conclude the presentation of the main result, we will deal with three other applica-
tions, specifically to exchangeable sequences of r.v.’s, to mixtures of Markov chains and to
the homogeneous Boltzmann equation. Due to the technical nature of these applications,
we have deemed more convenient to isolate each of them into a respective subsection,
labeled Subsections ., . and ., respectively. Section  is dedicated to the proof of
Theorem , which contains also an explicit characterization of the functions uh,l ’s and vl ’s,
and to the proof of Corollary .

1.1 Application to exchangeable sequences
Here, we consider a sequence {ξn}n≥ of exchangeable r.v.’s such that E[ξ] = , E[ξ 

 ] = ,
Cov(ξ, ξ) = Cov(ξ 

 , ξ 
 ) = , as in []. TakingH as the σ -algebra of the permutable events,

we can invoke the celebrated de Finetti’s representation theorem to show that () is ful-
filled. Moreover, from the arguments developed in the above-mentioned paper, we obtain
that the assumption on the covariances entails () and E[ξ 

j | H ] =  a.s. for all j ∈ N. Fi-
nally, we notice that there are many simple cases (for example, when |ξj| ≤ M a.s. for a
suitable constantM and all j ∈ N), in which () is easily verified. Hence, we conclude that
X = Z = P(T) = , so that the bound () is in force, and an estimate of the type of () will
follow from the application of Theorems - in Chapter  of []. To condense these facts
into a unitary statement, we denote with p̃ the random probability measure which meets
P[ξ ∈ A, . . . , ξn ∈ An | p̃] = ∏n

i= p̃(Ai) for all n ∈ N and A, . . . ,An ∈ B(R), according to de
Finetti’s theorem, and we state the following.

Proposition Let {ξn}n≥ be an exchangeable sequence of r.v.’s such that E[ξ] = , E[ξ 
 ] = ,

Cov(ξ, ξ) = Cov(ξ 
 , ξ 

 ) = . If
∫
R
xp̃(dx) ≤ m holds a.s. with some positive constant m,

then one gets

sup
x∈R

∣∣∣∣P[Sn ≤ x] –
√
π

∫ x

–∞
e–y

/ dy
∣∣∣∣

≤ C

[
m

/


∫ +∞



u,(t)
t

dt ·
∣∣∣∣∣

n∑
j=

cj

∣∣∣∣∣ +m

∫ +∞



u,(t)
t

dt ·
n∑
j=

cj

]
, ()

where C is an absolute constant.

The bound () represents an obvious generalization of (.) in [] because of the ar-
bitrariness, in the former inequality, of the weights c, . . . , cn.
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1.2 Application to mixtures of Markov chains
The papers [, ] deal with sequences {ξn}n≥, where each ξn takes value in a discrete
state space I , whose law is a mixture of laws of Markov chains. From a Bayesian stand-
point, one could think of {ξn}n≥ as a Markov chain with random transition matrix, to
which a prior distribution is assigned on the space of all transition matrices. The work
[] proves that, under the assumption of recurrence, this condition on the law of the
sequence is equivalent to the property of partial exchangeability of the random matrix
V = (Vi,n)i∈I,n≥, where Vi,n denotes the position of the process immediately after the nth
visit to the state i. We also recall that partial exchangeability (in the sense of de Finetti)
means that the distribution of V is invariant under finite permutation within rows. An
equivalent condition to partial exchangeability is the existence of a σ -algebra H such
that the Vi,n ’s are independent conditionally on it, that is,

P

[ k⋂
r=

nr⋂
m=

{Vjr ,m = vr,m}
∣∣∣ H

]
=

k∏
r=

nr∏
m=

P[Vjr ,m = vr,m | H ]

holds for every k ∈ N, j, . . . , jk ∈ I , n, . . . ,nk ∈ N and vr,m ∈ I , and, in addition, each of
the sequences (Vi,n)n≥ is exchangeable. Therefore, upon assuming, for simplicity, that I
is finite and that E[f (Vi,n) | H ] =  holds a.s. with a suitable function f : I → R, for all
i ∈ I and n ∈N, we have that the family of r.v.’s {f (Vi,n)}i∈I,n∈{,...,N} meets conditions ()-()
and fits the general setting of the present paper. The ultimate motivation of this applica-
tion is, in fact, to provide a Berry-Esseen inequality in order to quantify the error in ap-
proximating the law of

√
nσ –

f ( n
∑n

j= f (ξj)– f ) by the standard normal distribution, where
f := E[E∗(f (ξ))], σ 

f := E[Var∗(f (ξ))+
∑+∞

j= Cov∗(f (ξ), f (ξj))] and E∗, Var∗, Cov∗ represent
expectation, variance and covariance, respectively, w.r.t. the (random) stationary distribu-
tion of {ξn}n≥, given H . Such a result could prove an extremely concrete achievement
in Markov chain Monte Carlo settings, where the existence of a Berry-Esseen inequality
allows one to estimate σ 

f in order to decide whether 
n
∑n

j= f (ξj) (which is a quantity that
can be simulated) is a good estimate for f or not. At this stage, the well-known relation
between the Vi,n’s and the ξn ’s, contained in [] or in Sections - of Chapter II of [],
would come in useful to establish a link between two Berry-Esseen-like inequalities: the
former being relative to the family of r.v.’s {f (Vi,n)}i∈I,n∈{,...,N}, which follows from a direct
application of Theorem , the latter being relative to the sequence

√
nσ –

f ( n
∑n

j= f (ξj)– f ).
Due to the mathematical complexity of this task, this topic will be carefully developed in
a forthcoming paper [].

1.3 Application to the Boltzmann equation
In [], the study of the rate of relaxation to equilibrium of solutions to the spatially ho-
mogeneous Boltzmann equation for Maxwellian molecules is conducted by resorting to a
new probabilistic representation, set forth in Section . of that paper. The key ingredient
of such a representation is the random sum S(u) :=

∑ν
j= πj,νψ j,ν(u) ·Vj, where:

(i) u is a fixed point of the unitary sphere S ⊂R
;

(ii) (�,F ,Pt) is a probability space with a probability measure depending on the
parameter t ≥ , and G ⊂ H are suitable σ -algebras of F ;

http://www.journalofinequalitiesandapplications.com/content/2013/1/320
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(iii) ν is a r.v. such that Pt[ν = n] = e–t( – e–t)n– for all n ∈N, and such that ν is
G -measurable;

(iv) for any n ∈N and j = , . . . ,n, πj,n is a G -measurable r.v., with the property that∑n
j= π


j,n =  for all n ∈N;

(v) for any n ∈N and j = , . . . ,n, ψ j,n(u) is an H -measurable random vector, taking
values in S;

(vi) {Vj}j≥ is a sequence of i.i.d. random vectors taking values in R
, independent of H

and such that Et[V] = , Et[V,iV,j] = δi,jσ

i for any i, j ∈ {, , }, with ∑

i= σ

i = ,

and Et[|V|] =m < +∞. Here, Et stands for the expectation w.r.t. Pt and δi,j is the
Kronecker symbol.

After these preliminaries - whose detailed explanation the reader will find in the quoted
section of [] - it is clear that each realization of the random measure A 
→ Pt[S(u) ∈ A |
G ], withA ∈ B(R), has the same structure as the probability law of the sum Sn given by ()
in the present paper. In [, –] the reader will find some analogous representations,
set forth in connectionwith allied new forms of the Berry-Esseen inequality. Thanks to the
above-mentioned link, it is important to note that Theorem  of the present paper, along
with its proof, represents the key result needed to complete the argument developed in
Section .. of []. On the other hand, the application of Theorem  to the context of the
Boltzmann equation appears as a significant use of this abstract result in its full generality,
for the conditional independence is the form of stochastic dependence actually involved
and the normalization to conditional variances does not necessarily occur, so that all the
terms in the RHS of () play an active role. The successful utilization of Theorem  lies
in the fact that the quantities P(T), X, Y, W and Z are now easily tractable, thanks to the
computations developed in Appendices A. and A. of [].

2 Proofs
2.1 Proof of Theorem 1
Start by putting ψ̃j(t) := E[eitcjξj | H ] for j = , . . . ,n, and recall the standard expansion for
c.f.’s to write

ψ̃j(t) =  –


cj E

[
ξ 
j | H ]

t –
i
!
cj E

[
ξ 
j | H ]

t + R̃j(t) =  + q̃j(t) ()

with a suitable expression of the remainder R̃j. Superscript ˜ will be used throughout this
section to remark that a certain quantity is random. Now, a plain application of the Taylor
formula with the Bernstein form of the remainder gives

ex =
∑

k=

xk

k!
+
x

!

∫ 


exu( – u) du

=
∑

k=

xk

k!
+
x



∫ 



(
exu – 

)
( – u) du

=
∑

k=

xk

k!
+ x

∫ 



(
exu – xu – 

)
( – u) du
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so that R̃j can assume one of the following forms:

R̃j(t) =

!
cj t

E
[
ξ
j

∫ 


eiutcjξj ( – u) du

∣∣∣ H

]
()

= –
i

cj t

E
[
ξ 
j

∫ 



(
eiutcjξj – 

)
( – u) du

∣∣∣ H

]
()

= –cj t
E

[
ξ 
j

∫ 



(
eiutcjξj –  – iutcjξj

)
( – u) du

∣∣∣ H

]
. ()

Combining () and () yields |R̃j(t)| ≤ 
mcj t a.s., for every t and j = , . . . ,n. Conse-

quently, the definition of W entails

n∑
j=

∣∣R̃j(t)
∣∣ ≤ 


Wt a.s. ()

for every t and, if |t| ≤ τ ,

n∑
j=

∣∣R̃j(t)
∣∣ ≤ 


a.s. ()

Now, to obtain an upper bound for q̃j(t) in (), observe the following facts. First, the
Lyapunov inequality for moments yields E[ξ 

j | H ] ≤ m/
 and E[|ξj| | H ] ≤ m/

 a.s.
Second, |t| ≤ τ implies |cjt| ≤ 

m
–/
 . Hence, for every t in [–τ , τ ], one has

∣∣q̃j(t)∣∣ ≤ 


a.s. ()

so that the quantity Log ψ̃j(t) makes sense when Log is meant to be the principal branch
of the logarithm. Then put

Φ(z) :=
z – Log( + z)

z
=

∫ +∞



∫ s


e–zx

(
s – x
s

)
e–s dsdx

for all complex z such that �z > – (with the proviso that Φ() = /) and note that the
restriction ofΦ to the interval ]–,+∞[ is a completely monotone function. See Chapter 
of []. Equation () now gives

Log ψ̃j(t) = –


cj t

 –


cj

(
E
[
ξ 
j | H ]

– 
)
t –

i
!
cj E

[
ξ 
j | H ]

t + R̃j(t)

–Φ
(
q̃j(t)

)
q̃j (t) ()

and, taking account of (),

n∑
j=

Log ψ̃j(t) = –


t –



t

n∑
j=

cj
(
E
[
ξ 
j | H ]

– 
)
–

i
!
t

n∑
j=

cj E
[
ξ 
j | H ]

+
n∑
j=

R̃j(t) –
n∑
j=

Φ
(
q̃j(t)

)
q̃j (t). ()
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Now, put

Ãn := –



n∑
j=

cj
(
E
[
ξ 
j | H ]

– 
)
,

B̃n := –

!

n∑
j=

cj E
[
ξ 
j | H ]

,

H̃n(t) :=
n∑
j=

R̃j(t) –
n∑
j=

Φ
(
q̃j(t)

)
q̃j (t)

and exploit the conditional independence in () to obtain

E
[
eitSn | H ]

= exp

{
Log

[ n∏
j=

ψ̃j(t)

]}
= exp

{ n∑
j=

Log ψ̃j(t)

}

= e–t
/eÃnt+iB̃nteH̃n(t). ()

At this stage, it remains to provide upper bounds for |q̃j(t)| and |H̃n(t)|, to be used
throughout this section. From the definition of q̃j, one has

∣∣q̃j(t)∣∣ ≤ 

cj

∣∣E[ξ 
j | H ]∣∣t + 


cj

∣∣E[ξ 
j | H ]∣∣t + 

∣∣R̃j(t)
∣∣ a.s.,

which implies that

n∑
j=

∣∣q̃j(t)∣∣ ≤ ,
,

Wt a.s. ()

for every t in [–τ , τ ], thanks to ()-() and the Lyapunov inequality for moments. The
monotonicity of Φ yields

∣∣H̃n(t)
∣∣ ≤

(



+
,
,

Φ(–/)
)
Wt a.s. ()

for every t, and

∣∣H̃n(t)
∣∣ ≤ 



(



+
,
,

Φ(–/)
)
:= H a.s. ()

for every t in [–τ , τ ].
Then the validity of () with l =  can be derived from a combination of the above argu-

ments starting from

∣∣ϕn(t) – e–t
/∣∣ ≤ E

[∣∣E[eitSn | H ]∣∣1T
]
+ P(T)e–t

/

+ e–t
/∣∣E[(eÃnt+iB̃nt

(
eH̃n(t) – 

))
1Tc

]∣∣
+ e–t

/∣∣E[(eÃnt+iB̃nt – 
)
1Tc

]∣∣. ()
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First, apply the Markov inequality to conclude that

P(T)≤ P

{∣∣∣∣∣
n∑
j=

cj E
[
ξ 
j | H ]

– 

∣∣∣∣∣ ≥ /

}
≤ Z. ()

Second, after noting that

Ãn1Tc ≤ / a.s., ()

combine the elementary inequality |ez – | ≤ |z|e|z| with ()-() to obtain

e–t
/∣∣E[(eÃnt+iB̃nt

(
eH̃n(t) – 

))
1Tc

]∣∣ ≤ κWte–t
/ ()

for every t in [–τ , τ ], with κ := eH( 
 +

,
,Φ(–/)). As far as the fourth summand in

the RHS of () is concerned, write

∣∣E[(eÃnt+iB̃nt – 
)
1Tc

]∣∣
≤ ∣∣E[(eÃnt cos

(
B̃nt

)
– 

)
1Tc

]∣∣ + ∣∣E[eÃnt sin
(
B̃nt

)
1Tc

]∣∣
≤ ∣∣E[eÃnt

(
cos

(
B̃nt

)
– 

)
1Tc

]∣∣ + ∣∣E[(eÃnt – 
)
1Tc

]∣∣
+

∣∣E[(eÃnt – 
)
sin

(
B̃nt

)
1Tc

]∣∣ + ∣∣E[sin(B̃nt
)
1Tc

]∣∣ ()

and proceed by analyzing each summand in the last bound separately. As to the first term,
invoke () and use the elementary inequality –cosx

x ≤ 
 to obtain

∣∣E[eÃnt
(
cos

(
B̃nt

)
– 

)
1Tc

]∣∣ ≤ 

tet

/E
[
B̃
n
]
.

Since the Lyapunov inequality for moments entails

B̃
n =




( n∑
j=

cj E
[
ξ 
j | H ])

≤ 


m
/
 W a.s., ()

one gets

∣∣E[eÃnt
(
cos

(
B̃nt

)
– 

)
1Tc

]∣∣ ≤ 


m
/
 Wtet

/. ()

To continue, put Gr(x) :=
∑r

h= xh/h! for r in N and note that the Lagrange form of the
remainder in the Taylor formula gives

∣∣ex –Gr(x)
∣∣ ≤ |x|r+

(r + )!
(
 + ex

)
()

for every x in R. Moreover, the Lyapunov inequality for moments shows that

|Ãn| ≤ 

(
m

/
 + 

)
a.s. ()
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Concerning the second summand in the last member of (), take account of () with
r =  to write

∣∣E[(eÃnt – 
)
1Tc

]∣∣ ≤ ∣∣E[Ãn1Tc ]
∣∣t + 


E
[
Ã
n
(
 + eÃnt

)
1Tc

]
t

and, by means of () and the definitions of T , X and Z, conclude that

∣∣E[(eÃnt – 
)
1Tc

]∣∣ ≤ ∣∣E[Ãn]
∣∣t + 


(
m

/
 + 

)
P(T)t +



t

(
 + et

/)Z
=



tX +



(
m

/
 + 

)
tP(T) +



t

(
 + et

/)Z. ()

For the third summand, the combination of inequality | sinx| ≤ |x| with () with r = 
yields

∣∣E[(eÃnt – 
)
sin

(
B̃nt

)
1Tc

]∣∣ ≤ E
[|ÃnB̃n|

(
 + eÃnt

)
1Tc

]|t|
which, by means of the inequalities xy≤ x + y, () and (), becomes

∣∣E[(eÃnt – 
)
sin

(
B̃nt

)
1Tc

]∣∣ ≤ 

E
[
Ã
n + B̃

n
](
 + et

/)|t|
≤

(


Z +




m
/
 W

)(
 + et

/)|t|. ()

Finally, the elementary inequality x–sinx
x ≤ 

 entails

∣∣E[sin(B̃nt
)
1Tc

]∣∣ ≤ ∣∣E[B̃n1Tc ]
∣∣ · |t| + 


E
[|B̃n|

] · |t|.

After using again the Lyapunov inequality to write

|B̃n| ≤ 

m

/
 a.s., ()

note that () and () lead to

∣∣E[sin(B̃nt
)
1Tc

]∣∣ ≤ 

Y|t| + 


m

/
 P(T)|t| + 

,
m

/
 W|t|. ()

The combination of (), (), (), (), () and () gives

e–t
/∣∣E[(eÃnt+iB̃nt – 

)
1Tc

]∣∣
≤ 


Xte–t

/ +


Y|t|e–t/

+W
[



m
/
 te–t

/ +



m
/


(
 + et

/)|t|e–t/ + 
,

m
/
 |t|e–t/

]

+ Z
[


(
m

/
 + 

)
te–t

/ +


(
 + et

/)(t + |t|)e–t/ + 

m

/
 |t|e–t/

]
. ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/320


Dolera Journal of Inequalities and Applications 2013, 2013:320 Page 12 of 21
http://www.journalofinequalitiesandapplications.com/content/2013/1/320

At this stage, the upper bound () with l =  follows from (), (), () and () by
putting

u,(t) :=


te–t

/,

u,(t) :=



|t|e–t/,

u,(t) :=



m
/
 te–t

/ +



m
/


(
 + et

/)|t|e–t/
+


,

m
/
 |t|e–t/ + κte–t

/,

v(t) :=


(
m

/
 + 

)
te–t

/ +


(
 + et

/)(t + |t|)e–t/ + 

m

/
 |t|e–t/ + e–t

/.

To prove () when l = , differentiate () with respect to t to obtain

d
dt

E
[
eitSn | H ]

= –te–t
/eÃnt+iB̃nteH̃n(t)

+ e–t
/(Ãnt + iB̃nt

)
eÃnt+iB̃nteH̃n(t)

+ e–t
/eÃnt+iB̃ntH̃ ′

n(t)e
H̃n(t). ()

As the first step, write

∣∣∣∣ ddt
[
ϕn(t) – e–t

/]∣∣∣∣ ≤ E
[∣∣∣∣ ddt E

[
eitSn | H ]∣∣∣∣1T

]

+ P(T)|t|e–t/ + |t|e–t/∣∣E[(eÃnt+iB̃nt – 
)
1Tc

]∣∣
+ |t|e–t/∣∣E[eÃnt+iB̃nt

(
eH̃n(t) – 

)
1Tc

]∣∣
+ e–t

/∣∣E[(Ãnt + iB̃nt
)
1Tc

]∣∣
+ e–t

/∣∣E[(Ãnt + iB̃nt
)(
eÃnt+iB̃nteH̃n(t) – 

)
1Tc

]∣∣
+ e–t

/E
[
eÃnt

∣∣H̃ ′
n(t)

∣∣e|H̃n(t)|1Tc
]

()

and then proceed to study each summand in a separate way. All of these terms, except
the last one, can be bounded by using inequalities already proved. First of all, the first
summand coincides with the first term of () with l = , and for the second summand it
suffices to recall (). The bound for the third summand is given by () while, for the
fourth one, use (). Next, thanks to () and (), write

∣∣E[(Ãnt + iB̃nt
)
1Tc

]∣∣ ≤ P(T)
[
m

/
 +  +



m

/


]
+ |t|X +



tY. ()

As for the sixth summand, start from

∣∣E[(Ãnt + iB̃nt
)(
eÃnt+iB̃nteH̃n(t) – 

)
1Tc

]∣∣
≤ E

[∣∣Ãnt + iB̃nt
∣∣ · ∣∣eH̃n(t) – 

∣∣eÃnt1Tc
]

+
∣∣E[(Ãnt + iB̃nt

)(
eÃnt+iB̃nt – 

)
1Tc

]∣∣. ()
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Then recall (), () and () and combine the elementary inequality |ez –| ≤ |z|e|z| with
() and () to conclude that

E
[∣∣Ãnt + iB̃nt

∣∣ · ∣∣eH̃n(t) – 
∣∣eÃnt1Tc

]
≤ κW

[(
m

/
 + 

)|t| + 

m

/
 t

]
et

/t. ()

As for the latter term in the RHS of (), note that

∣∣E[(Ãnt + iB̃nt
) · (eÃnt+iB̃nt – 

)
1Tc

]∣∣
≤ E

[(
|Ãnt| + 

∣∣B̃nt
∣∣) · ∣∣eÃnt cos

(
B̃nt

)
– 

∣∣1Tc
]

+ E
[(
|Ãnt| + 

∣∣B̃nt
∣∣) · ∣∣sin(B̃nt

)∣∣eÃnt1Tc
]
.

Now, combining the elementary inequality –cosx
x ≤ 

 with () and () entails

∣∣eÃnt cos
(
B̃nt

)
– 

∣∣1Tc ≤ ∣∣eÃnt
[
cos

(
B̃nt

)
– 

]∣∣1Tc +
∣∣eÃnt – 

∣∣1Tc

≤ 

B̃
nt

et
/ + |Ãn|t

(
 + et

/) a.s.

for every t in R and hence

E
[(
|Ãnt| + 

∣∣B̃nt
∣∣) · ∣∣eÃnt cos

(
B̃nt

)
– 

∣∣1Tc
]

≤ 


m
/


(
m

/
 + 

)
W|t|et/ + 


m

/
 Wtet

/

+ Z
(
 + et

/)( 

|t| + 


t

)
+




m
/
 Wt

(
 + et

/) ()

holds, along with

E
[(
|Ãnt| + 

∣∣B̃nt
∣∣) · ∣∣eÃnt sin

(
B̃nt

)∣∣1Tc
]

≤ 

Ztet

/ +Wm
/


(



t +



|t|
)
et

/. ()

The study of the last summand in () reduces to the analysis of the first derivative of H̃n,
which is equal to

H̃ ′
n(t) =

n∑
j=

R̃′
j(t) – 

n∑
j=

Φ
(
q̃j(t)

)
q̃j(t)q̃′

j(t)

–
n∑
j=

Φ ′(q̃j(t))q̃′
j(t)q̃


j (t). ()

Now, recall () and note that a dominated convergence argument yields

R̃′
j(t) = –

i

cj t

E
[
ξ 
j

∫ 


( – u)

(
eiutcjξj – 

)
du

∣∣∣ H

]

+


cj t

E
[
ξ
j

∫ 


u( – u)eiutcjξj du

∣∣∣ H

]
,
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from which

∣∣R̃′
j(t)

∣∣ ≤ 

mcj |t| a.s. ()

for every t. Then, if t is in [–τ , τ ], then () gives

n∑
j=

∣∣R̃′
j(t)

∣∣ ≤ 


m
/
 a.s. ()

From the equality q̃′
j(t) = –cj E[ξ 

j | H ]t – i
 c


j E[ξ 

j | H ]t + R̃′
j(t) and the fact that |cjt| ≤


m

–/
 when |t| ≤ τ it follows that

∣∣q̃′
j(t)

∣∣ ≤ mcj t
 +




mcj t
 + 

∣∣R̃′
j(t)

∣∣ a.s.

for every t in [–τ , τ ]. This, combined with ()-(), yields

n∑
j=

∣∣q̃′
j(t)

∣∣ ≤ W
(



t +



m
/
 |t|

)
a.s. ()

Moreover, for every t is in [–τ , τ ], one has

n∑
j=

∣∣q̃′
j(t)

∣∣ ≤ 


m
/
 a.s. ()

The complete monotonicity of Φ entails


n∑
j=

∣∣Φ(
q̃j(t)

)
q̃j(t)q̃′

j(t)
∣∣ + n∑

j=

∣∣Φ ′(q̃j(t))q̃′
j(t)q̃


j (t)

∣∣

≤ Φ

(
–


){ n∑
j=

∣∣q̃j(t)∣∣ + n∑
j=

∣∣q̃′
j(t)

∣∣} +
∣∣∣∣Φ ′

(
–


)∣∣∣∣
√



m
/


n∑
j=

∣∣q̃j(t)∣∣

for every t is in [–τ , τ ] and, in view of () and (),


n∑
j=

∣∣Φ(
q̃j(t)

)
q̃j(t)q̃′

j(t)
∣∣ + n∑

j=

∣∣Φ ′(q̃j(t))q̃′
j(t)q̃


j (t)

∣∣

≤ W
[
Φ

(
–


)
,
,

t +Φ

(
–


)



m
/
 |t|

+Φ

(
–


)



t +
∣∣∣∣Φ ′

(
–


)∣∣∣∣,,

√



m
/
 t

]
.

The combination of this last inequality with () yields

∣∣H̃ ′
n(t)

∣∣ ≤ W
[
Φ

(
–


)
,
,

t +Φ

(
–


)



m
/
 |t| +Φ

(
–


)



t

+
∣∣∣∣Φ ′

(
–


)∣∣∣∣,,

√



m
/
 t +




|t|
]
. ()
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Taking account of (), () and (), the last member in () can be bounded as follows:

e–t
/E

[
eÃnt

∣∣H̃ ′
n(t)

∣∣e|H̃n(t)|1Tc
]

≤ eHW
[
Φ

(
–


)
,
,

t +Φ

(
–


)



m
/
 |t|

+Φ

(
–


)



t +
∣∣∣∣Φ ′

(
–


)∣∣∣∣,,

√



m
/
 t +




|t|
]
e–t

/. ()

At this point, use () along with (), (), (), (), ()-() and (), to obtain () in
the case l = , with the following functions:

u,(t) :=
(


t + 

)
|t|e–t/,

u,(t) :=
(


t +



t

)
e–t

/,

u,(t) :=



m
/
 |t|e–t/ + 


m

/


(
 + et

/)te–t/
+


,

m
/
 te–t

/ + κ|t|e–t/

+ eH
[
Φ

(
–


)
,
,

t +Φ

(
–


)



m
/
 |t| +Φ

(
–


)



t

+
∣∣∣∣Φ ′

(
–


)∣∣∣∣,,

√



m
/
 t +




|t|
]
e–t

/

+ κ

[(
m

/
 + 

)|t| + 

m

/
 t

]
te–t

/

+



m
/


(
m

/
 + 

)|t|e–t/ + 


m
/
 te–t

/

+



m
/
 t

(
 + et

/)e–t/ +m
/


(



t +



|t|
)
e–t

/,

v(t) :=


(
m

/
 + 

)|t|e–t/ + 

(
 + et

/)(|t| + t
)
e–t

/

+


m

/
 te–t

/ + |t|e–t/ + 
[
m

/
 +  +



m

/


]
e–t

/

+ |t|
(


+


|t|

)(
 + et

/)e–t/ + 

te–t

/.

To complete the proof of the proposition, it remains to study the second derivative. There-
fore, differentiate () with respect to t to obtain

d

dt
E
[
eitSn | H ]

=
(
t – 

)
e–t

/eÃnt+iB̃nteH̃n(t)

+ [Ãn + iB̃nt]e–t
/eÃnt+iB̃nteH̃n(t)

+
[
Ã

nt
 – B̃

nt
 + iÃnB̃nt

]
e–t

/eÃnt+iB̃nteH̃n(t)

+
[
H̃ ′′

n (t) +
(
H̃ ′

n(t)
)]e–t/eÃnt+iB̃nteH̃n(t)
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+ H̃ ′
n(t)

[
(Ãn – )t + iB̃nt

]
e–t

/eÃnt+iB̃nteH̃n(t)

– t
[
Ãnt + iB̃nt

]
e–t

/eÃnt+iB̃nteH̃n(t). ()

The first step consists in splitting the expectation E[ d
dt E[e

itSn | H ]] on T and Tc, which
produces

∣∣∣∣ ddt
[
ϕn(t) – e–t

/]∣∣∣∣ ≤ E
[∣∣∣∣ ddt

E
[
eitSn | H ]∣∣∣∣1T

]
+ P(T)

∣∣t – 
∣∣e–t/ + ∑

r=

Er , ()

where the terms Er will be defined and studied separately. First,

E :=
∣∣E[(t – 

)
e–t

/(eÃnt+iB̃nteH̃n(t) – 
)
1Tc

]∣∣
≤ ∣∣t – 

∣∣e–t/∣∣E[eÃnt+iB̃nt
(
eH̃n(t) – 

)
1Tc

]∣∣
+

∣∣t – 
∣∣e–t/∣∣E[(eÃnt+iB̃nt – 

)
1Tc

]∣∣
and a bound for this quantity is provided by multiplying by |t – | the sum of the RHSs in
() and (). Second,

E :=
∣∣E[[Ãn

(
 – t

)
+ iB̃nt( – t)

]
e–t

/eÃnt+iB̃nteH̃n(t)1Tc
]∣∣

≤ e–t
/E

[[
|Ãn| ·

∣∣ – t
∣∣ + |B̃n| ·

∣∣t( – t)
∣∣] · ∣∣eH̃n(t) – 

∣∣]
+ e–t

/∣∣E[[Ãn
(
 – t

)
+ iB̃nt( – t)

] · (eÃnt+iB̃nt – 
)
1Tc

]∣∣
+ e–t

/∣∣E[(Ãn
(
 – t

)
+ iB̃nt( – t)

)
1Tc

]∣∣ ()

and, according to the same line of reasoning used to get (),

E
[[
|Ãn| ·

∣∣ – t
∣∣ + |B̃n| ·

∣∣t( – t)
∣∣] · ∣∣eH̃n(t) – 

∣∣]
≤ κW

[(
m

/
 + 

)∣∣ – t
∣∣ +m

/


∣∣t( – t)
∣∣]t.

Next, as far as the second summand in the RHS of () is concerned, the same argument
used to obtain ()-() leads to

e–t
/∣∣E[[Ãn

(
 – t

)
+ iB̃nt( – t)

] · (eÃnt+iB̃nt – 
)
1Tc

]∣∣
≤ 


m

/
 W

[
e–t

/t
((
m

/
 + 

)∣∣ – t
∣∣ +m

/


∣∣t( – t)
∣∣)

+ 
(
e–t

/t
(
 + et

/)∣∣t( – t)
∣∣ + e–t

/|t| · ∣∣ – t
∣∣

+ e–t
/t · | – t|)] + 


Z
[
e–t

/t
(
 + et

/)∣∣ – t
∣∣

+ e–t
/t

(
 + et

/)∣∣t( – t)
∣∣ + e–t

/|t| · ∣∣ – t
∣∣].

For the third summand in the RHS of (), it is enough to exploit the definitions of X, Y,
Z and W, along with () and (), to have

∣∣E[(Ãn
(
 – t

)
+ iB̃nt( – t)

)
1Tc

]∣∣
≤ X

∣∣ – t
∣∣ + Y

∣∣t( – t)
∣∣ + Z

[(
m

/
 + 

)∣∣ – t
∣∣ +m

/


∣∣t( – t)
∣∣].
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Then E := E[[Ã
nt +B̃

nt + |ÃnB̃n||t|]e–t/+Ãnt+|H̃n(t)|1Tc ] can be bounded by resort-
ing to () and (). Whence,

E ≤ e–t
/eH

{(
t + |t|)E[Ã

n
]
+

(
t + |t|)E[B̃

n
]}

and, from () and the definition of Z, one gets

E ≤ e–t
/eH

{



(
t + |t|)Z +




m
/


(
t + |t|)W}

.

The next term is E := e–t/E[(H̃ ′
n(t))eÃnt+|H̃n(t)|1Tc ], whose upper bound is given imme-

diately by resorting to (), () and (). Therefore, since W ≤ m,

E ≤ We–t
/eHm

[
Φ

(
–


)
,
,

t +Φ

(
–


)



m
/
 |t|

+Φ

(
–


)



t +
∣∣∣∣Φ ′

(
–


)∣∣∣∣ · ,
,

√



m
/
 t +




|t|
]

.

To analyze E := e–t/E[|H̃ ′′
n (t)| · eÃnt+|H̃n(t)|1Tc ], it is necessary to study the second deriva-

tive of H̃n, that is,

H̃ ′′
n (t) =

n∑
j=

R̃′′
j (t) – 

n∑
j=

Φ ′(q̃j(t))q̃j(t)[q̃′
j(t)

]

– 
n∑
j=

Φ
(
q̃j(t)

)[
q̃′
j(t)

] – 
n∑
j=

Φ
(
q̃j(t)

)
q̃′′
j (t)q̃j(t)

–
n∑
j=

Φ ′′(q̃j(t))q̃j (t)[q̃′
j(t)

] – n∑
j=

Φ ′(q̃j(t))q̃′′
j (t)q̃


j (t). ()

To bound this quantity, first recall () and exchange derivatives with integrals to obtain

R̃′′
j (t) = –cj E

[
ξ 
j

∫ 


( – u) · (eiutcjξj –  – iutcjξj

)
du

∣∣∣ H

]

– cj t
E

[
ξ 
j

∫ 


( – u) · (iucjξj)eiutcjξj du

∣∣∣ H

]

– cj tE
[
ξ 
j

∫ 


( – u) · (iucjξj) ·

(
eiutcjξj – 

)
du

∣∣∣ H

]
,

which, after applications of the elementary inequality |eix –∑r–
k=(ix)k/k!| ≤ |x|r/r!, gives

∣∣R̃′′
j (t)

∣∣ ≤ 

mcj t

 a.s. ()

Whence,

n∑
j=

∣∣R̃′′
j (t)

∣∣ ≤ 

Wt a.s. ()
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is valid for every t, and

n∑
j=

∣∣R̃′′
j (t)

∣∣ ≤ 


m
/
 a.s. ()

holds for each t in [–τ , τ ]. From q̃′′
j (t) = –cj E[ξ 

j | H ] – icj E[ξ 
j | H ]t + R̃′′

j (t) and the fact
that |cjt| ≤ 

m
–/
 for each t in [–τ , τ ], one deduces |q̃′′

j (t)| ≤ cj m + 
 c


j m + |R̃′′

j (t)|.
This inequality, combined with ()-(), yields

n∑
j=

∣∣q̃′′
j (t)

∣∣ ≤ W
(



+



m
/
 t

)
a.s. ()

and, for t in [–τ , τ ],

n∑
j=

∣∣q̃′′
j (t)

∣∣ ≤ 


m a.s. ()

At this stage, invoke () and the completemonotonicity ofΦ , and combine the inequality
|xy| ≤ x + y with (), (), ()-() and ()-() to get

∣∣H̃ ′′
n (t)

∣∣ ≤ W
{


t + 

∣∣∣∣Φ ′
(
–


)∣∣∣∣ · 


(



t +



m
/
 |t|

)

+ Φ
(
–


)(



t +



m
/
 |t|

)
+Φ ′′

(
–


)
· 


,
,

m
/
 t

+
∣∣∣∣Φ ′

(
–


)∣∣∣∣
√



,
,

m
/
 t

+Φ

(
–


)[(



+



m
/
 t

)
+
,
,

t
]}

.

Therefore, an upper bound forE is given bymultiplying the aboveRHSby e–t/eH. Finally,
the last term

E := e–t
/E

[

∣∣H̃ ′

n(t)
∣∣ · [∣∣(Ãn – )t

∣∣ + |B̃n|t
]
eÃnt+|H̃n(t)|1Tc

]
can be handled without further effort by resorting to (), (), (), () and ().
Therefore, an upper bound is obtained immediately by multiplying the RHS of () by
((m/

 + )|t| + 
m

/
 t)e–t/eH.

A combination of all the last inequalities starting with () leads to the proof of () for
l = , with the coefficients specified as follows:

u,(t) :=
(


t

∣∣t – 
∣∣ + ∣∣ – t

∣∣)e–t/,
u,(t) :=

(∣∣t( – t)
∣∣ + 


|t|∣∣t – 

∣∣)e–t/,
u,(t) :=

[



m
/
 te–t

/ +



m
/


(
 + et

/)|t|e–t/ + 
,

m
/
 |t|e–t/

]
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× ∣∣t – 
∣∣ + κ

∣∣t – 
∣∣te–t/ + κ

[(
m

/
 + 

)∣∣ – t
∣∣ +m

/


∣∣t( – t)
∣∣]te–t/

+



m
/


[
e–t

/t
((
m

/
 + 

)∣∣ – t
∣∣ +m

/


∣∣t( – t)
∣∣)

+ e–t
/t

(
 + et

/)∣∣t( – t)
∣∣ + e–t

/∣∣t( – t
)∣∣ + e–t

/t · | – t|]
+




eHm/


(
t + |t|)e–t/

+meH
[
Φ

(
–


)
,
,

t +Φ

(
–


)



m
/
 |t|

+Φ

(
–


)



t +
∣∣∣∣Φ ′

(
–


)∣∣∣∣,,

√



m
/
 t +




|t|
]

e–t
/

+ eH
{


t + 

∣∣∣∣Φ ′
(
–


)∣∣∣∣ 


(



t +



m
/
 |t|

)

+ Φ
(
–


)
·
(



t +



m
/
 |t|

)

+Φ

(
–


)[(



+



m
/
 t

)
+
,
,

t
]

+Φ ′′
(
–


)
· 


,
,

m
/
 t +

∣∣∣∣Φ ′
(
–


)∣∣∣∣
√



,
,

m
/
 t

}
e–t

/

+ eH
((

m
/
 + 

)|t| + 

m

/
 t

)
·
[
Φ

(
–


)
,
,

t +Φ

(
–


)



m
/
 |t|

+Φ

(
–


)



t +
∣∣∣∣Φ ′

(
–


)∣∣∣∣,,

√



m
/
 t +




|t|
]
e–t

/,

v(t) := 
[∣∣t – 

∣∣ + (
m

/
 + 

)∣∣ – t
∣∣ +m

/


∣∣t( – t)
∣∣]e–t/

+



(
t + |t|)e–t/eH +




[
e–t

/t
(
 + et

/)∣∣ – t
∣∣

+ e–t
/t

(
 + et

/)∣∣t( – t)
∣∣ + e–t

/|t| · ∣∣ – t
∣∣]

+
∣∣t – 

∣∣ ·
[


(
m

/
 + 

)
t +



(
 + et

/) · (t + |t|) + 

m

/
 |t|

]
e–t

/.

2.2 Proof of Corollary 2
After an application of (), one splits the integrals on the RHS into inner integrals (i.e.,
on the domain |t| ≤ n/

M = τ ) and outer integrals (i.e., on the domain |t| ≥ n/
M ). Apropos

of the integrals of the latter type, the Minkowski inequality entails
(∫

|t|≥ n/
M

∣∣∣∣ dldtl
(
ϕn(t) – e–t

/)∣∣∣∣


dt
)/

≤
(∫

|t|≥ n/
M

∣∣∣∣ dldtl
ϕn(t)

∣∣∣∣


dt
)/

+
(∫

|t|≥ n/
M

∣∣∣∣ dldtl
e–t

/
∣∣∣∣


dt
)/

for every n ∈ N and l = , . By using the elementary properties of the Gaussian c.f., as in
the proof of Lemma .IV in [], one gets

(∫
|t|≥ n/

M

∣∣∣∣ dldtl
e–t

/
∣∣∣∣


dt
)/

=O(/
√
n)
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for l = , . Moreover, after considering the conditional expectation w.r.t. H , one imme-
diately has

∫
|t|≥ n/

M

∣∣∣∣ dldtl
ϕn(t)

∣∣∣∣


dt ≤ E

[∫
|t|≥ n/

M

∣∣∣∣∣ d
l

dtl

n∏
j=

E
[
eitf̃ (Xj)/

√
n | H ]∣∣∣∣∣



dt

]
≤ βn,l

for every n ∈ N and l = , , which concludes the study of the outer integrals by means of
(). At this stage, Theorem  can be invoked to bound the inner integrals, after noting that
u,l , u,l , u,l , vl are all square-integrable functions on R. Apropos of the r.v.’s X, Y, Z and
W, one can start by noting that the bounds |Y| ≤ M√

n , |W| ≤ M

n are in force directly from
the definition of these random quantities. Then further computations lead immediately
to |X| ≤ Mαn and |Z| ≤ M(αn + δn). Finally, definition () and limn→+∞ βn,l =  show
that

sup
f∈F

∫
|t|≤ n/

M

∣∣∣∣ dldtl
E
[
eitSn | H ]∣∣∣∣



dt

is uniformly bounded w.r.t. n ∈ N. Therefore, the inner integral of the first term in ()
can be estimated, thanks to (), by C · Z with some suitable constant independent of n.
Invoking again the relation |Z| ≤ M(αn + δn), one arrives at the desired conclusion.
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