6,360 research outputs found
Stellar and Molecular Radii of a Mira Star: First Observations with the Keck Interferometer Grism
Using a new grism at the Keck Interferometer, we obtained spectrally
dispersed (R ~ 230) interferometric measurements of the Mira star R Vir. These
data show that the measured radius of the emission varies substantially from
2.0-2.4 microns. Simple models can reproduce these wavelength-dependent
variations using extended molecular layers, which absorb stellar radiation and
re-emit it at longer wavelengths. Because we observe spectral regions with and
without substantial molecular opacity, we determine the stellar photospheric
radius, uncontaminated by molecular emission. We infer that most of the
molecular opacity arises at approximately twice the radius of the stellar
photosphere.Comment: 12 pages, including 3 figures. Accepted by ApJ
First L-band Interferometric Observations of a Young Stellar Object: Probing the Circumstellar Environment of MWC 419
We present spatially-resolved K- and L-band spectra (at spectral resolution R
= 230 and R = 60, respectively) of MWC 419, a Herbig Ae/Be star. The data were
obtained simultaneously with a new configuration of the 85-m baseline Keck
Interferometer. Our observations are sensitive to the radial distribution of
temperature in the inner region of the disk of MWC 419. We fit the visibility
data with both simple geometric and more physical disk models. The geometric
models (uniform disk and Gaussian) show that the apparent size increases
linearly with wavelength in the 2-4 microns wavelength region, suggesting that
the disk is extended with a temperature gradient. A model having a power-law
temperature gradient with radius simultaneously fits our interferometric
measurements and the spectral energy distribution data from the literature. The
slope of the power-law is close to that expected from an optically thick disk.
Our spectrally dispersed interferometric measurements include the Br gamma
emission line. The measured disk size at and around Br gamma suggests that
emitting hydrogen gas is located inside (or within the inner regions) of the
dust disk.Comment: Accepted for publication in Ap
A low optical depth region in the inner disk of the HerbigAe star HR5999
Circumstellar disks surrounding young stars are known to be the birthplaces
of planets, and the innermost astronomical unit is of particular interest. We
present new long-baseline spectro-interferometric observations of the HerbigAe
star, HR5999, obtained in the H and K bands with the AMBER instrument at the
VLTI, and aim to produce near-infrared images at the sub-AU spatial scale. We
spatially resolve the circumstellar material and reconstruct images using the
MiRA algorithm. In addition, we interpret the interferometric observations
using models that assume that the near-infrared excess is dominated by the
emission of a circumstellar disk. We compare the images reconstructed from the
VLTI measurements to images obtained using simulated model data. The K-band
image reveals three main elements: a ring-like feature located at ~0.65 AU, a
low surface brightness region inside, and a central spot. At the maximum
angular resolution of our observations (1.3 mas), the ring is resolved while
the central spot is only marginally resolved, preventing us from revealing the
exact morphology of the circumstellar environment. We suggest that the ring
traces silicate condensation, i.e., an opacity change, in a circumstellar disk
around HR 5999. We build a model that includes a ring at the silicate
sublimation radius and an inner disk of low surface brightness responsible for
a large amount of the near-infrared continuum emission. The model successfully
fits the SED, visibilities, and closure phases, and provides evidence of a low
surface brightness region inside the silicate sublimation radius. This study
provides additional evidence that in HerbigAe stars, there is material in a low
surface brightness region, probably a low optical depth region, located inside
the silicate sublimation radius and of unknown nature.Comment: 11 pages, 10 figure
Investigating situated cultural practices through cross-sectoral digital collaborations: policies, processes, insights
The (Belfast) Good Friday Agreement represents a major milestone in Northern Ireland's recent political history, with complex conditions allowing for formation of a ‘cross-community’ system of government enabling power sharing between parties representing Protestant/loyalist and Catholic/nationalist constituencies. This article examines the apparent flourishing of community-focused digital practices over the subsequent ‘post-conflict’ decade, galvanised by Northern Irish and EU policy initiatives armed with consolidating the peace process. Numerous digital heritage and storytelling projects have been catalysed within programmes aiming to foster social processes, community cohesion and cross-community exchange. The article outlines two projects—‘digital memory boxes’ and ‘interactive galleon’—developed during 2007–2008 within practice-led PhD enquiry conducted in collaboration with the Nerve Centre, a third-sector media education organisation. The article goes on to critically examine the processes involved in practically realising, and creatively and theoretically reconciling, community-engaged digital production in a particular socio-political context of academic-community collaboration
Copepod life strategy and population viability in response to prey timing and temperature : testing a new model across latitude, time, and the size spectrum
A new model ("Coltrane": Copepod Life-history Traits and Adaptation to Novel Environments) describes environmental controls on copepod populations via (1) phenology and life history and (2) temperature and energy budgets in a unified framework. The model tracks a cohort of copepods spawned on a given date using a set of coupled equations for structural and reserve biomass, developmental stage, and survivorship, similar to many other individual-based models. It then analyzes a family of cases varying spawning date over the year to produce population-level results, and families of cases varying one or more traits to produce community-level results. In an idealized global-scale testbed, the model correctly predicts life strategies in large Calanus spp. ranging from multiple generations per year to multiple years per generation. In a Bering Sea testbed, the model replicates the dramatic variability in the abundance of Calanus glacialis/marshallae observed between warm and cold years of the 2000s, and indicates that prey phenology linked to sea ice is a more important driver than temperature per se. In a Disko Bay, West Greenland testbed, the model predicts the viability of a spectrum of large-copepod strategies from income breeders with a adult size ~100 μgC reproducing once per year through capital breeders with an adult size > 1000 μgC with a multiple-year life cycle. This spectrum corresponds closely to the observed life histories and physiology of local populations of Calanus finmarchicus, C. glacialis, and Calanus hyperboreus. Together, these complementary initial experiments demonstrate that many patterns in copepod community composition and productivity can be predicted from only a few key constraints on the individual energy budget: the total energy available in a given environment per year; the energy and time required to build an adult body; the metabolic and predation penalties for taking too long to reproduce; and the size and temperature dependence of the vital rates involved
LkH 330: Evidence for dust clearing through resolved submillimeter imaging
Mid-infrared spectrophotometric observations have revealed a small sub-class
of circumstellar disks with spectral energy distributions (SEDs) suggestive of
large inner gaps with low dust content. However, such data provide only an
indirect and model dependent method of finding central holes. We present here
the direct characterization of a 40 AU radius inner gap in the disk around LkHa
330 through 340 GHz (880 micron) dust continuum imaging with the Submillimeter
Array (SMA). This large gap is fully resolved by the SMA observations and
mostly empty of dust with less than 1.3 x 10^-6 M_solar of solid particles
inside of 40 AU. Gas (as traced by accretion markers and CO M-band emission) is
still present in the inner disk and the outer edge of the gap rises steeply --
features in better agreement with the underlying cause being gravitational
perturbation than a more gradual process such as grain growth. Importantly, the
good agreement of the spatially resolved data and spectrophometry-based model
lends confidence to current interpretations of SEDs with significant dust
emission deficits as arising from disks with inner gaps or holes. Further
SED-based searches can therefore be expected to yield numerous additional
candidates that can be examined at high spatial resolution.Comment: 11 pages, 3 figures, accepted to ApJ
Nonlinear acoustic waves in channels with variable cross sections
The point symmetry group is studied for the generalized Webster-type equation
describing non-linear acoustic waves in lossy channels with variable cross
sections. It is shown that, for certain types of cross section profiles, the
admitted symmetry group is extended and the invariant solutions corresponding
to these profiles are obtained. Approximate analytic solutions to the
generalized Webster equation are derived for channels with smoothly varying
cross sections and arbitrary initial conditions.Comment: Revtex4, 10 pages, 2 figure. This is an enlarged contribution to
Acoustical Physics, 2012, v.58, No.3, p.269-276 with modest stylistic
corrections introduced mainly in the Introduction and References. Several
typos were also correcte
Correlation between the spatial distribution of circumstellar disks and massive stars in the young open cluster NGC 6611. II: Cluster members selected with Spitzer/IRAC
Context: the observations of the proplyds in the Orion Nebula Cluster,
showing clear evidence of ongoing photoevaporation, have provided a clear proof
about the role of the externally induced photoevaporation in the evolution of
circumstellar disks. NGC 6611 is an open cluster suitable to study disk
photoevaporation, thanks to its large population of massive members and of
stars with disk. In a previous work, we obtained evidence of the influence of
the strong UV field generated by the massive cluster members on the evolution
of disks around low-mass Pre-Main Sequence members. That work was based on a
multi-band BVIJHK and X-ray catalog purposely compiled to select the cluster
members with and without disk. Aims: in this paper we complete the list of
candidate cluster members, using data at longer wavelengths obtained with
Spitzer/IRAC, and we revisit the issue of the effects of UV radiation on the
evolution of disks in NGC 6611. Methods: we select the candidate members with
disks of NGC 6611, in a field of view of 33'x34' centered on the cluster, using
IRAC color-color diagrams and suitable reddening-free color indices. Besides,
using the X-ray data to select Class III cluster members, we estimate the disks
frequency vs. the intensity of the incident radiation emitted by massive
members. Results: we identify 458 candidate members with circumstellar disks,
among which 146 had not been revealed in our previous work. Comparing of the
various color indices we used to select the cluster members with disk, we claim
that they detect the excesses due to the emission of the same physical region
of the disk: the inner rim at the dust sublimation radius. Our new results
confirm that UV radiation from massive stars affects the evolution of nearby
circumstellar disks.Comment: Accepted for publication at Astronomy & Astrophysic
- …
