28,475 research outputs found
Microquasar models for 3EG J1828+0142 and 3EG J1735-1500
Microquasars are promising candidates to emit high-energy gamma-rays.
Moreover, statistical studies show that variable EGRET sources at low galactic
latitudes could be associated with the inner spiral arms. The variable nature
and the location in the Galaxy of the high-mass microquasars, concentrated in
the galactic plane and within 55 degrees from the galactic center, give to
these objects the status of likely counterparts of the variable low-latitude
EGRET sources. We consider in this work the two most variable EGRET sources at
low-latitudes: 3EG J1828+0142 and 3EG J1735-1500, proposing a microquasar model
to explain the EGRET data in consistency with the observations at lower
energies (from radio frequencies to soft gamma-rays) within the EGRET error
box.Comment: (1)Universitat de Barcelona, (2)Instituto Argentino de
Radioastronomia (3) Facultad de Ciencias Astronomicas y Geofisicas
(4)Lawrence Livermore National Laboratory 6 pages, 2 figures. Presented as a
poster at the V Microquasar Workshop, Beijing, June 2004. Accepted for
publication in the Chinese Journal of Astronomy & Astrophysic
Models for gamma-ray production in low-mass microquasars
Unlike high-mass gamma-ray binaries, low-mass microquasars lack external
sources of radiation and matter that could produce high-energy emission through
interactions with relativistic particles. In this work we consider the
synchrotron emission of protons and leptons that populate the jet of a low-mass
microquasar. In our model photohadronic and inverse Compton (IC) interactions
with synchrotron photons produced by both protons and leptons result in a
high-energy tail of the spectrum. We also estimate the contribution from
secondary pairs injected through photopair production. The high-energy emission
is dominated by radiation of hadronic origin, so we can call these objects
proton microquasars.Comment: 4 pages, 2 figures, accepted for publication in the International
Journal of Modern Physics D, proceedings of HEPRO meeting, held in Dublin, in
September 200
Extreme intranight variability in the BL Lacertae object AO 0235+164
We present results of two-colour photometry with high time resolution of the
violently variable BL Lac object AO 0235+164. We have found extreme intranight
variability with amplitudes of ~ 100 % over time scales of 24 hours. Changes of
0.5 magnitudes in both R and V bands were measured within a single night, and
variations up to 1.2 magnitudes occurred from night to night. A complete
outburst with an amplitude ~ 30 % was observed during one of the nights, while
the spectrum remained unchanged. This seems to support an origin based on a
thin relativistic shock propagating in such a way that it changes the viewing
angle, as recently suggested by Kraus et al. (1999) and Qian et al. (2000).Comment: 4 pages, 3 figures, to appear in Astronomy & Astrophysics (Letters
Leptonic emission from microquasar jets: from radio to very high-energy gamma-rays
Microquasars are sources of very high-energy gamma-rays and, very probably,
high-energy gamma-ray emitters. We propose a model for a jet that can allow to
give accurate observational predictions for jet emission at different energies
and provide with physical information of the object using multiwavelength data.Comment: 2 pages, 1 figure. Proceedings of the conference: "International
Astronomical Union Symposium No. 230: Populations of High Energy Sources in
Galaxies". Edited by Evert J.A. Meurs & Giuseppina Fabbian
Cosmological black holes and the direction of time
Macroscopic irreversible processes emerge from fundamental physical laws of
reversible character. The source of the local irreversibility seems to be not
in the laws themselves but in the initial and boundary conditions of the
equations that represent the laws. In this work we propose that the screening
of currents by black hole event horizons determines, locally, a preferred
direction for the flux of electromagnetic energy. We study the growth of black
hole event horizons due to the cosmological expansion and accretion of cosmic
microwave background radiation, for different cosmological models. We propose
generalized McVittie co-moving metrics and integrate the rate of accretion of
cosmic microwave background radiation onto a supermassive black hole over
cosmic time. We find that for flat, open, and closed Friedmann cosmological
models, the ratio of the total area of the black hole event horizons with
respect to the area of a radial co-moving space-like hypersurface always
increases. Since accretion of cosmic radiation sets an absolute lower limit to
the total matter accreted by black holes, this implies that the causal past and
future are not mirror symmetric for any spacetime event. The asymmetry causes a
net Poynting flux in the global future direction; the latter is in turn related
to the ever increasing thermodynamic entropy. Thus, we expose a connection
between four different "time arrows": cosmological, electromagnetic,
gravitational, and thermodynamic.Comment: 13 pages, 2 figures in Foundations of Science (2017
- …